Flow, Turbulence and Combustion

, Volume 98, Issue 1, pp 195–216 | Cite as

Effect of Local DBD Plasma Actuation on Transition in a Laminar Separation Bubble

Article

Abstract

This work examines the effect of local active flow control on stability and transition in a laminar separation bubble. Experiments are performed in a wind tunnel facility on a NACA 0012 airfoil at a chord Reynolds number of 130 000 and an angle of attack of 2 degrees. Controlled disturbances are introduced upstream of a laminar separation bubble forming on the suction side of the airfoil using a surface-mounted Dielectric Barrier Discharge plasma actuator. Time-resolved two-component Particle Image Velocimetry is used to characterise the flow field. The effect of frequency and amplitude of plasma excitation on flow development is examined. The introduction of artificial harmonic disturbances leads to significant changes in separation bubble topology and the characteristics of coherent structures formed in the aft portion of the bubble. The development of the bubble demonstrates strong dependence on the actuation frequency and amplitude, revealing the dominant role of incoming disturbances in the transition scenario. Statistical, topological and linear stability theory analysis demonstrate that significant mean flow deformation produced by controlled disturbances leads to notable changes in stability characteristics compared to those in the unforced baseline case. The findings provide a new outlook on the role of controlled disturbances in separated shear layer transition and instruct the development of effective flow control strategies.

Keywords

Laminar separation bubble Airfoil Boundary layer separation Separated shear layer Laminar-to-turbulent transition DBD plasma actuator Flow control 

References

  1. 1.
    Carmichael, B.H.: Low reynolds number airfoil survey NASA CR 165803 (1981)Google Scholar
  2. 2.
    Gaster, M.: The Structure and Behaviour of Laminar Separation Bubbles Reports and Memoranda, vol. 3595. Aeronautical Research Council, London (1967)Google Scholar
  3. 3.
    Burgmann, S., Schröder, W.: Investigation of the vortex induced unsteadiness of a separation bubble via Time-Resolved and scanning PIV measurements. Exp. Fluids 45(4), 675–691 (2008)CrossRefGoogle Scholar
  4. 4.
    Dovgal, A., Kozlov, V., Michalke, A.: Laminar boundary layer separation: Instability and associated phenomena. Prog. Aerosp. Sci. 30, 61–94 (1994)CrossRefGoogle Scholar
  5. 5.
    Hain, R., Kähler, C.J., Radespiel, R.: Dynamics of laminar separation bubbles at Low-Reynolds-Number aerofoils. J. Fluid Mech. 630, 129 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Jones, L.E., Sandberg, R.D., Sandham, N.D.: Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257–296 (2010)CrossRefMATHGoogle Scholar
  7. 7.
    Marxen, O., Henningson, D.S.: The effect of Small-Amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 1–33 (2011)CrossRefMATHGoogle Scholar
  8. 8.
    Gad-el Hak, M.: Flow control: The future. J. Aircr. 38(3), 402–418 (2001)CrossRefGoogle Scholar
  9. 9.
    Marxen, O., Kotapati, R.B., Mittal, R., Zaki, T.: Stability analysis of separated flows subject to control by zero-net-mass-flux jet. Phys. Fluids (1994-present) 27(2), 024107 (2015)CrossRefGoogle Scholar
  10. 10.
    Postl, D., Balzer, W., Fasel, H.F.: Control of laminar separation using pulsed vortex generator jets: Direct numerical simulations. J. Fluid Mech. 676, 81–109 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Yarusevych, S., Sullivan, P.E., Kawall, J.G.: Effect of acoustic excitation amplitude on airfoil boundary layer and wake development. AIAA J. 45(4), 760–771 (2007)CrossRefGoogle Scholar
  12. 12.
    Tani, I.: Low-Speed Flows involving bubble separations. Prog. Aerosp. Sci. 5, 70–103 (1964)CrossRefGoogle Scholar
  13. 13.
    Boutilier, M.S.H., Yarusevych, S.: Separated shear layer transition over an airfoil at a low Reynolds number. Phys. Fluids 24(8), 084105 (2012)CrossRefGoogle Scholar
  14. 14.
    Häggmark, C.P., Hildings, C., Henningson, D.S.: A numerical and experimental study of a transitional separation bubble. Aerosp. Sci. Technol. 5(5), 317–328 (2001)CrossRefMATHGoogle Scholar
  15. 15.
    Lang, M., Rist, U., Wagner, S.: Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp. Fluids 36(1), 43–52 (2004)CrossRefGoogle Scholar
  16. 16.
    Alam, M., Sandham, N.D.: Direct numerical simulation of short laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 223–250 (2000)CrossRefMATHGoogle Scholar
  17. 17.
    Jones, L.E., Sandberg, R.D., Sandham, N.D.: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175–207 (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Marxen, O., Lang, M., Rist, U.: Vortex formation and vortex breakup in a laminar separation bubble. J. Fluid Mech. 728, 58–90 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Yarusevych, S., Kawall, J.G., Sullivan, P.E.: Airfoil performance at low reynolds numbers in the presence of periodic disturbances. J. Fluids Eng., Transactions of the ASME, 128(3), 587–595 (2006)CrossRefGoogle Scholar
  20. 20.
    Yarusevych, S., Sullivan, P.E., Kawall, J.G.: Coherent structures in an airfoil boundary layer and wake at low Reynolds numbers. Phys. Fluids 18(4), 044101 (2006)CrossRefGoogle Scholar
  21. 21.
    Yarusevych, S., Sullivan, P.E., Kawall, J.G.: On vortex shedding from an airfoil in Low-Reynolds-Number flows. J. Fluid Mech. 632, 245–271 (2009)CrossRefMATHGoogle Scholar
  22. 22.
    Ol, M.V., Mcauliffe, B.R., Hanff, E.S., Scholz, U., Kähler, C.: Comparison of laminar separation bubble measurements on a low Reynolds number airfoil in three facilities. In: 35th AIAA Fluid Dynamics Conference and Exhibit, June, Toronto (2005)Google Scholar
  23. 23.
    Greenblatt, D., Wygnanski, I.J.: Control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36(7), 487–545 (2000)CrossRefGoogle Scholar
  24. 24.
    Rizzetta, D.P., Visbal, M.R.: Numerical investigation of plasma-based control for low-reynolds-number airfoil flows. AIAA J. 49(2), 411–425 (2011)CrossRefMATHGoogle Scholar
  25. 25.
    Boutilier, M.S.H., Yarusevych, S.: Effects of end plates and blockage on low-reynolds-number flows over airfoils. AIAA J. 50(7), 1547–1559 (2012)CrossRefGoogle Scholar
  26. 26.
    Pröbsting, S., Yarusevych, S.: Laminar separation bubble development on an airfoil emitting tonal noise. J. Fluid Mech. 780, 167–191 (2015)CrossRefGoogle Scholar
  27. 27.
    Wieneke, B.: PIV uncertainty quantification from correlation statistics. Meas. Sci. Technol. 26, 074002 (2015)CrossRefGoogle Scholar
  28. 28.
    Burgmann, S., Dannemann, J., Schröder, W.: Time-Resolved and volumetric PIV measurements of a transitional separation bubble on an SD7003 airfoil. Exp. Fluids 44(4), 609–622 (2008)CrossRefGoogle Scholar
  29. 29.
    Kotsonis, M., Ghaemi, S., Veldhuis, L., Scarano, F.: Measurement of the body force field of plasma actuators. J. Phys. D Appl. Phys. 44(4), 045204 (2011)CrossRefGoogle Scholar
  30. 30.
    Kotsonis, M.: Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26(9), 092001 (2015)CrossRefGoogle Scholar
  31. 31.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)CrossRefGoogle Scholar
  33. 33.
    Benard, N., Moreau, E.: Response of a circular cylinder wake to a symmetric actuation by non-thermal plasma discharges. Exp. Fluids 54, 1467 (2013)CrossRefGoogle Scholar
  34. 34.
    Sirovich, L., Kirby, M.: Low-dimensional procedure for the characterization of human faces. J. Opt. Soc. Am. A Opt. Image Sci. 4(3), 519–524 (1987)CrossRefGoogle Scholar
  35. 35.
    Lengani, D., Simoni, D., Ubaldi, M., Zunino, P.: POD analysis of the unsteady behavior of a laminar separation bubble. Exp. Thermal Fluid Sci. 58, 70–79 (2014)CrossRefGoogle Scholar
  36. 36.
    Oudheusden, B., Scarano, F., Hinsberg, N., Watt, D.: Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39(1), 86–98 (2005)CrossRefGoogle Scholar
  37. 37.
    Diwan, S.S., Ramesh, O.N.: On the origin of the inflectional instability of a laminar separation bubble. J. Fluid Mech. 629, 263–298 (2009)CrossRefMATHGoogle Scholar
  38. 38.
    Boiko, A., Dovgal, A., Hein, S., Henning, A.: Particle image velocimetry of a Low-Reynolds-Number separation bubble. Exp. Fluids 50(1), 13–21 (2011)CrossRefGoogle Scholar
  39. 39.
    Van Ingen, J., Kotsonis, M.: A Two-Parameter Method for En Transition Prediction. In: 6th AIAA Theoretical Fluid Mechanics Conference (2011)Google Scholar
  40. 40.
    Drazin, P.G., Reid, W.H.: Hydrodynamic stability (1981)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Mechanical and Mechatronics EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Faculty of Aerospace EngineeringDelft University of TechnologyDelftThe Netherlands

Personalised recommendations