Flow, Turbulence and Combustion

, Volume 97, Issue 1, pp 263–294 | Cite as

Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization

  • Luis Tay-Wo-Chong
  • Mathieu Zellhuber
  • Thomas Komarek
  • Hong G. Im
  • Wolfgang PolifkeEmail author


The present paper argues that the prediction of turbulent premixed flames under non-adiabatic conditions can be improved by considering the combined effects of strain and heat loss on reaction rates. The effect of strain in the presence of heat loss on the consumption speed of laminar premixed flames was quantified by calculations of asymmetric counterflow configurations (“fresh-to-burnt”) with detailed chemistry. Heat losses were introduced by setting the temperature of the incoming stream of products on the “burnt” side to values below those corresponding to adiabatic conditions. The consumption speed decreased in a roughly exponential manner with increasing strain rate, and this tendency became more pronounced in the presence of heat losses. An empirical relation in terms of Markstein number, Karlovitz Number and a non-dimensional heat loss parameter was proposed for the combined influence of strain and heat losses on the consumption speed. Combining this empirical relation with a presumed probability density function for strain in turbulent flows, an attenuation factor that accounts for the effect of strain and heat loss on the reaction rate in turbulent flows was deduced and implemented into a turbulent combustion model. URANS simulations of a premixed swirl burner were carried out and validated against flow field and OH chemiluminescence measurements. Introducing the effects of strain and heat loss into the combustion model, the flame topology observed experimentally was correctly reproduced, with good agreement between experiment and simulation for flow field and flame length.


Turbulent combustion Premixed flame Strain rate Heat loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Meier, W., Duan, X.R., Weigand, P., Stricker, W., Aigner, M.: Investigations of swirl flames in a gas turbine model combustor - I. flow field, structures, temperature and species distributions. Combust. Flame 144, 225–236 (2006)CrossRefGoogle Scholar
  2. 2.
    Schmitt, P., Poinsot, T., Schuermans, B., Geigle, K.P.: Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner. J. Fluid Mech. 570, 17–46 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Komarek, T., Tay-Wo-Chong, L., Zellhuber, M., Huber, A., Polifke, W.: Modeling the Effect of Heat Loss on Flame Stabilization in Shear Layers, Int. Conf. on Jets, Wakes and Separated Flows, ICJWSF, Berlin (2008)Google Scholar
  4. 4.
    Tay-Wo-Chong, L., Komarek, T., Zellhuber, M., Lenz, J., Hirsch, C., Polifke, W.: Influence of Strain and Heat Loss on Flame Stabilization in a Non-adiabatic Combustor. Number 810366 in Proceedings of European Combustion Meeting, Vienna Combustion Institute (2009)Google Scholar
  5. 5.
    Tay-Wo-Chong, L., Komarek, T., Kaess, R., Föller, S., Polifke, W.: Identification of flame transfer functions from LES of a premixed swirl burner. Number GT2010-22769. In: Proceeding of ASME Turbo Expo 2010, Glasgow, UK, Glasgow, UK, June 14-18. ASME., p. 13 (2010)Google Scholar
  6. 6.
    Poinsot, T., Veynante, D.: Theoretical and numerical combustion. In: Edwards, R.T., Philadelphia. 2nd edn. (2005)Google Scholar
  7. 7.
    Darabiha, N., Candel, S.M., Giovangigli, V., Smooke, M.D.: Extinction of strained premixed propane-air flames with complex chemistry. Combust. Sci. Technol. 60, 267–285 (1988)CrossRefGoogle Scholar
  8. 8.
    Libby, P.A., Williams, F.A.: Strained premixed laminar flames under nonadiabatic conditions. Combust. Sci. Technol. 31(1), 1–42 (1983)CrossRefGoogle Scholar
  9. 9.
    Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction of turbulent counterflow flames with reactants diluted by hot products. Combust. Flame 102, 101–114 (1995)CrossRefGoogle Scholar
  10. 10.
    Smooke, M.D., Crump, J., Seshadri, K., Giovangigli, V.: Comparison between experimental measurements and numerical calculations of the structure of counterflow, diluted, methane-air, premixed flames. Symp. (Int.) Combust. 23, 463–470 (1991)CrossRefGoogle Scholar
  11. 11.
    Cant, R.S., Bray, K.N.C.: Strained laminar flamelet calculations of premixed turbulent combustion in a closed vessel. Symp. (Int.) Combust. 22(1), 791–799 (1989)CrossRefGoogle Scholar
  12. 12.
    Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Reports 14(7), 993–1025 (1995)Google Scholar
  13. 13.
    Tay-Wo-Chong, L., Polifke, W.: Large eddy simulation based study of the influence of thermal boundary condition and combustor confinement on premix flame transfer functions. J. Eng. Gas Turbines Power 135(2), 021502 (2013)CrossRefGoogle Scholar
  14. 14.
    Keppeler, R., Pfitzner, M., Tay-Wo-Chong, L., Komarek, T., Polifke, W.: Including heat loss and quench effects in algebraic models for large eddy simulation of premixed combustion. Number GT2012-68689 in Proc. of ASME Turbo Expo Glasgow, UK. ASME, June 11th-15th 2012 (2010)Google Scholar
  15. 15.
    Kaess, R., Poinsot, T., Polifke, W.: Determination of the Stability Map of a Premix Burner based on Flame Transfer Functions computed with Transient CFD. Number 810304 in Proceedings of European Combustion Meeting, Vienna, Combustion Institute (2009)Google Scholar
  16. 16.
    Chterev, I., Foley, C.W., Foti, D., Kostka, S., Caswell, A.W., Jiang, N., Lynch, A., Noble, D.R., Menon, S., Seitzman, J.M., et al.: Flame and flow topologies in an annular swirling flow. Combust. Sci. Technol. 186(8), 1041–1074 (2014)CrossRefGoogle Scholar
  17. 17.
    Guiberti, T.F., Durox, D., Scouflaire, P., Schuller, T.: Impact of heat loss and hydrogen enrichment on the shape of confined swirling flames. Proc. Combust. Inst. 35(2), 1385–1392 (2015)CrossRefGoogle Scholar
  18. 18.
    Mejia, D., Selle, L., Bazile, R., Poinsot, T.: Wall-temperature effects on flame response to acoustic oscillations. Proc. Combust. Inst. 35(3), 3201–3208 (2015)CrossRefGoogle Scholar
  19. 19.
    Williams, F.A.: Combustion Theory. Benjamin/Cummings, Menlo Park, CA (1985)Google Scholar
  20. 20.
    Im, H.G., Chen, J.H.: Effects of flow transients on the burning velocity of laminar hydrogen/air premixed flames. Proc. Combust. Inst. 28(2), 1833–1840 (2000)CrossRefGoogle Scholar
  21. 21.
    Poinsot, T.J., Haworth, D.C., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95(1–2), 118–132 (1993)CrossRefGoogle Scholar
  22. 22.
    Ishizuka, S., Law, C.K.: An experimental study on extinction and stability of stretched premixed flames. Symp. Combust. 19(1), 327–335 (1982). Nineteenth Symposium (International) on CombustionCrossRefGoogle Scholar
  23. 23.
    Yahagi, Y., Ueda, T., Mizomoto, M.: Extinction mechanism of lean methanes/air turbulent premixed flame in a stagnation point flow. Symp. (Int.) Combust. 24(1), 537–542 (1992). Twenty-Fourth Symposium on CombustionCrossRefGoogle Scholar
  24. 24.
    Bruneaux, G., Poinsot, T., Ferziger, J.H. : Premixed flame-wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Al-Shaalan, T.M., Rutland, C.: Turbulent scalar transport, and reaction rates in flame-wall interaction. Symp. (Int.) Combust. 27, 793–799 (1998)CrossRefGoogle Scholar
  26. 26.
    Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28(3), 193–266 (2002)CrossRefGoogle Scholar
  27. 27.
    Krediet, H.J., Beck, C.H., Krebs, W., Schimek, S., Paschereit, C.O., Kok, J.B.W.: Identification of the flame describing function of a premixed swirl flame from LES. Combust. Sci. Technol. 184(7–8), 888–900 (2012)CrossRefGoogle Scholar
  28. 28.
    Proch, F., Kempf, A.M.: Modeling heat loss effects in the large Eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 35(3), 3337–3345 (2015)CrossRefGoogle Scholar
  29. 29.
    Schmid, H., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame 113, 79–91 (1998)CrossRefGoogle Scholar
  30. 30.
    Clavin, P.: Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prog. Energy Combust. Sci. 11(1), 1–59 (1985)CrossRefGoogle Scholar
  31. 31.
    Clavin, P., Joulin, G.: Premixed flames in large scale and high intensity turbulent flow. J. Physique Lettres 44, L1–L12 (1983)CrossRefGoogle Scholar
  32. 32.
    Samaniego, J.M., Mantel, T.: Fundamental mechanisms in premixed turbulent flame propagation via flame-vortex interactions, Part I: experiment. Combust. Flame 118(4), 537–556 (1999)CrossRefGoogle Scholar
  33. 33.
    Sun, C.J., Law, C.K.: On the nonlinear response of stretched premixed flames. Combust. Flame 121(1–2), 236–248 (2000)CrossRefGoogle Scholar
  34. 34.
    Chung, S.H., Law, C.K.: An integral analysis of the structure and propagation of stretched premixed flames. Combust. Flame 72(3), 325–336 (1988)CrossRefGoogle Scholar
  35. 35.
    Poinsot, T., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81(1), 45–73 (1992)CrossRefGoogle Scholar
  36. 36.
    Davis, S.G., Quinard, J., Searby, G.: Determination of markstein numbers in counterflow premixed flames. Combust. Flame 130(1-2), 112–122 (2002)CrossRefGoogle Scholar
  37. 37.
    Dixon-Lewis, G.: Laminar premixed flame extinction limits. I combined effects of stretch and upstream heat loss in the twin-flame unburnt-to-unburnt opposed flow configuration. Proc. R. Soc. A 452, 1857–1884 (1996)CrossRefzbMATHGoogle Scholar
  38. 38.
    Kostiuk, L.W., Bray, K.N.C., Chew, T.C.: Premixed turbulent combustion in counterflowing streams. Combust. Sci. Technol. 64, 233–241 (1989)CrossRefGoogle Scholar
  39. 39.
    Law, C.K., Zhu, D.L., Yu, G.: Propagation and extinction of stretched premixed flames. Symp. (Int.) Combust. 21(1), 1419–1426 (1988). Twenty-First Symposuim (International on Combustion)CrossRefGoogle Scholar
  40. 40.
    Bradley, D., Lau, A.K.C.: The mathematical modelling of premixed turbulent combustion. Pure and Appl. Chem. 62(5), 803–814 (1990)CrossRefGoogle Scholar
  41. 41.
    Cant, R.S., Rogg, B., Bray, K.N.C.: On laminar flamelet modelling of the mean reaction rate in a premixed turbulent flame. Combust. Sci. Technol. 69, 53–61 (1990)CrossRefGoogle Scholar
  42. 42.
    Dixon-Lewis, G.: Structure of laminar flames. Symp. (Int.) Combust. 23(1), 305–324 (1991). Twenty-Third Symposium (International) on CombustionCrossRefGoogle Scholar
  43. 43.
    Rogg, B.: Numerical analysis of strained premixed ch4-air flames, with detailed chemistry, Technical Report CUED/A-THERMO/TR22, Cambridge University (1988)Google Scholar
  44. 44.
    Rogg, B.: Response and flamelet structure of stretched premixed methane—air flames. Combust. Flame 73(1), 45–65 (1988)CrossRefGoogle Scholar
  45. 45.
    Mantel, T., Samaniego, J.M.: Fundamental mechanisms in premixed turbulent flame propagation via vortex-flame interactions Part II: numerical simulation. Combust. Flame 118(4), 557–582 (1999)CrossRefGoogle Scholar
  46. 46.
    Law, C. K.: Combustion physics. Cambridge University Press, New York (2006)CrossRefGoogle Scholar
  47. 47.
    Polifke, W., Flohr, P., Brandt, M.: Modeling of inhomogeneously premixed combustion with an extended TFC model. J. Eng. Gas Turbines Power 124(1), 58–65 (2002)CrossRefGoogle Scholar
  48. 48.
    Rogg, B., Wang, W.: RUN-1DL the laminar flame and flamelet code. User Manual. Lehrstuhl für Stromungsmechanik, Ruhr-Universität Bochum, vol. D44780. Bochum, Germany (2001)Google Scholar
  49. 49.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner Jr., W.C., Qin, Z., Lissianski, V.V.: GRI-Mech 3.0.
  50. 50.
    Kee, R.J., Rupley, F.M., Miller, J.A.: Chemkin II: a fortran chemical kinetics package for the analysis of gas-phase chemical kinetics. Technical Report SAND89-8009B, Sandia National Laboratories (1989)Google Scholar
  51. 51.
    van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRefGoogle Scholar
  52. 52.
    Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)CrossRefzbMATHGoogle Scholar
  53. 53.
    Kolmogorov, A.N., Petrovskii, I.G., Piskunov, N.S.: A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem. Bjul. Moskovskovo Gos. Univ 1, 1–72 (1937)Google Scholar
  54. 54.
    Brutscher, T., Zarzalis, N., Bockhorn, H.: An experimentally based approach for the space-averaged laminar burning velocity used for modeling premixed turbulent combustion. Proc. Combust. Inst. 29, 1825–1832 (2002)CrossRefGoogle Scholar
  55. 55.
    Wäsle, J.: Vorhersage der Lärmemission turbulenter vormischflammen, PhD Thesis, Technische Universität München (2007)Google Scholar
  56. 56.
    Bray, K.N.C., Cant, R.S.: Some applications of kolmogorov’s turbulence research in the field of combustion. In: Royal Society (London), Proceedings, Series A-Mathematical and Physical Sciences, vol. 434, pp. 217–240 (1991)Google Scholar
  57. 57.
    Bradley, D., Gaskell, P.H., Sedaghat, A., Gub, X.J.: Generation of pdfs for flame curvature and for flame stretch rate in premixed turbulent combustion. Combust. Flame 135, 503–523 (2003)CrossRefGoogle Scholar
  58. 58.
    Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86, 311–332 (1991)CrossRefGoogle Scholar
  59. 59.
    Veynante, D., Piana, J., Duclos, J.M., Martel, C.: Experimental analysis of flame surface density models for premixed turbulent combustion. Symp. (Int.) Combust. 26(1), 413–420 (1996)CrossRefGoogle Scholar
  60. 60.
    Duclos, J.M., Veynante, D., Poinsot, T.: Comparison of flamelet models for premixed turbulent combustion. Combust. Flame 95, 101–117 (1993)CrossRefGoogle Scholar
  61. 61.
    Komarek, T., Polifke, W.: Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Eng. Gas Turbines Power 132, 061503 (2010)CrossRefGoogle Scholar
  62. 62.
    Leonard, B.P., Mokhtari, S.: Ultra-sharp nonoscillatory convection schemes for high-speed steady multidimensional flow, Technical Report NASA TM 1-2568 (ICOMP-90-12), NASA Lewis Research Center (1990)Google Scholar
  63. 63.
    Vandoormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147–163 (1984)zbMATHGoogle Scholar
  64. 64.
    Fluent 12 User Manual (2009)Google Scholar
  65. 65.
    Davis, S.G., Quinard, J., Searby, G.: Markstein numbers in counterflow, methane- and propane- air flames: a computational study. Combust. Flame 130(1–2), 123–136 (2002)CrossRefGoogle Scholar
  66. 66.
    Bechtold, J.K., Matalon, M.: The dependence of the Markstein length on stoichiometry. Combust. Flame 127(1–2), 1906–1913 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Luis Tay-Wo-Chong
    • 1
    • 3
  • Mathieu Zellhuber
    • 1
    • 4
  • Thomas Komarek
    • 1
    • 5
  • Hong G. Im
    • 2
  • Wolfgang Polifke
    • 1
    Email author
  1. 1.Professur für ThermofluiddynamikTechnische Universität MünchenGarchingGermany
  2. 2.Clean Combustion Research CenterKing Abdullah University of Science and TechnologyThuwalSaudi Arabia
  3. 3.Alstom (Switzerland) LtdBadenSwitzerland
  4. 4.Linde AGMünchenGermany
  5. 5.MTU Aero EnginesMünchenGermany

Personalised recommendations