Advertisement

Flow, Turbulence and Combustion

, Volume 95, Issue 2–3, pp 481–500 | Cite as

Application of the Dynamic F-TACLES Combustion Model to a Lean Premixed Turbulent Flame

  • A. HosseinzadehEmail author
  • T. Schmitt
  • A. Sadiki
  • J. Janicka
Article

Abstract

The power-law wrinkling model proposed by Charlette et al. (Combust. Flame 131(1), 159–181, 2002) is applied in a dynamic approach (Charlette et al., 131(1),181–197 2002) and coupled with F-TACLES (Filtered TAbulated Chemistry for Large Eddy Simulation) combustion model (Schmitt et al., Proc. Combust. Inst. 34(1), 1261–1268, 2013). A ”Germano-like” procedure based on a Gaussian filtering of the flame structure is used in this dynamic formulation (Wang et al., Combust. Flam 158(11), 2199–2213, 2011). The combustion model is implemented in a block structured low-Mach code including the dynamic Smagorinsky model to describe the subgrid scale flow structures. Diverse numerical simulations are conducted for a lean premixed turbulent Bunsen type flame (Matrix Burner), both with dynamic and non-dynamic formulation of the power-low wrinkling model on two different grid levels to retrieve the evolving flow and combustion properties. Comparisons of numerical and experimental statistical results show a large discrepancy for non-dynamic formulation (Charlette et al., Combust. Flame 131(1), 159–181 2002) using different predefined values for the power exponent. The statistical results using dynamically determined model parameter are very encouraging and underline that the utilization of the dynamic formulation is very important for an automatically correct prediction of the turbulent burning velocity.

Keywords

Large eddy simulation Turbulent premixed combustion Tabulated chemistry Dynamic SGS modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auzillon, P., Fiorina, B., Vicquelin, R., Darabiha, N., Gicquel, O., Veynante, D.: Modeling chemical flame structure and combustion dynamics in LES. Proc. Combust. Inst. 33(1), 1331–1338 (2011)CrossRefGoogle Scholar
  2. 2.
    Auzillon, P., Gicquel, O., Darabiha, N., Veynante, D., Fiorina, B.: A Filtered Tabulated Chemistry model for LES of stratified flames. Combust. Flame 159 (8), 2704–2717 (2012)CrossRefGoogle Scholar
  3. 3.
    Boger, M., Veynante, D., Boughanem, H., Trouv, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In Symposium (International) on Combustion 27(1), 917–925 (1998)CrossRefGoogle Scholar
  4. 4.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–181 (2002)CrossRefGoogle Scholar
  5. 5.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: Dynamic formulation. Combust. Flame 131(1), 181–197 (2002)CrossRefGoogle Scholar
  6. 6.
    Chen, Y.C., Peters, N., Schneemann, G.A., Wruck, N., Renz, U., Mansour, M.S.: The detailed flame structure of highly stretched turbulent premixed methane-air flames. Combust. flame 107(3), 223–IN2 (1996)CrossRefGoogle Scholar
  7. 7.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843 (2000)CrossRefGoogle Scholar
  8. 8.
    Fiorina, B., Vicquelin, R., Auzillon, P., Darabiha, N., Gicquel, O., Veynante, D.A.: filtered tabulated chemistry model for LES of premixed combustion. Combust. Flame 157(3), 465–475 (2010)CrossRefGoogle Scholar
  9. 9.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. (1989-1993) 3(7), 1760–1765 (1991)zbMATHCrossRefGoogle Scholar
  10. 10.
    de Goey, L.P.H., van Oijen, J.A., Hermanns, R.T.E., Bongers, H: CHEM1D: a package for the simulation of one-dimensional flames (2003)Google Scholar
  11. 11.
    Hussein, H.J., Capp, S.P., George, W.K.: Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid. Mech. 258, 31–75 (1994)CrossRefGoogle Scholar
  12. 12.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30(1), 537–547 (2005)CrossRefGoogle Scholar
  13. 13.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids (1994-present) 16(11), L91–L94 (2004)CrossRefGoogle Scholar
  15. 15.
    Knudsen, E., Pitsch, H.: A dynamic model for the turbulent burning velocity for large eddy simulation of premixed combustion. Combust. Flame 154(4), 740–760 (2008)CrossRefGoogle Scholar
  16. 16.
    Knudsen, E., Pitsch, H.: Capabilities and limitations of multi-regime flamelet combustion models. Combust. Flame 159(1), 242–264 (2012)CrossRefGoogle Scholar
  17. 17.
    Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)CrossRefGoogle Scholar
  18. 18.
    Moureau, V., Fiorina, B., Pitsch, H.: A level set formulation for premixed combustion LES considering the turbulent flame structure. Combust. Flame 156(4), 801–812 (2009)CrossRefGoogle Scholar
  19. 19.
    Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)CrossRefGoogle Scholar
  20. 20.
    Oijen, J.V., Goey, L.D.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRefGoogle Scholar
  21. 21.
    Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)CrossRefGoogle Scholar
  22. 22.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31(2), 3059–3066 (2007)CrossRefGoogle Scholar
  24. 24.
    Schmitt, T., Sadiki, A., Fiorina, B., Veynante, D.: Impact of dynamic wrinkling model on the prediction accuracy using the F-TACLES combustion model in swirling premixed turbulent flames. Proc. Combust. Inst. 34(1), 1261–1268 (2013)CrossRefGoogle Scholar
  25. 25.
    Schmitt, T., Boileau, M., Veynante, D.: Flame wrinkling factor dynamic modeling for large eddy simulations of turbulent premixed combustion. Flow, Turbulence and Combustion, 1(94), 199–217 (2014)Google Scholar
  26. 26.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Qin, Z.: GRI 3.0. Gas Research Institute, Chicago, ILGoogle Scholar
  27. 27.
    Wang, G., Boileau, M., Veynante, D.: Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion. Combust. Flame 158(11), 2199–2213 (2011)CrossRefGoogle Scholar
  28. 28.
    Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. In: Symposium (International) on Combustion, vol. 27, pp 899–907 (1998)Google Scholar
  29. 29.
    Zajadatz, M., Nikolaos Z., Wolfgang, L.: Investigation of the Turbulent Flame Speed for Natural Gas and Natural Gas/Hydrogen Mixtures at High Turbulence Levels and Volumetric Heat Release Rates.. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. pp. V01BT04A003-V01BT04A003 (2013)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • A. Hosseinzadeh
    • 1
    Email author
  • T. Schmitt
    • 2
  • A. Sadiki
    • 1
  • J. Janicka
    • 1
  1. 1.Institute of Energy and Power Plant TechnologyDarmstadt University of TechnologyDarmstadtGermany
  2. 2.EM2C Laboratory, CNRS, Ecole Centrale ParisParisFrance

Personalised recommendations