Flow, Turbulence and Combustion

, Volume 95, Issue 2–3, pp 501–517 | Cite as

Mixing Modelling Framework Based on Multiple Mapping Conditioning for the Prediction of Turbulent Flame Extinction

  • K. VogiatzakiEmail author
  • S. Navarro-Martinez
  • S. De
  • A. Kronenburg


A stochastic implementation of the Multiple Mapping Conditioning (MMC) approach has been applied to a turbulent piloted jet diffusion flame (Sandia flame F) that is close to extinction. Two classic mixing models (Curl’s and IEM) are introduced in the MMC context to model the turbulent mixing. The suggested model involves the use of a reference space (that is mapped to mixture fraction space) in order to define particle proximity. The addition of the MMC ideas to the IEM and Curl’s models, that is suggested in the current work, aspires to combine the simplicity of these two models with the enforced compositional locality without violating the linearity and independence principles. The formulation of the approach is discussed in detail and results are presented for the mixing field and reactive species. The predictions are compared with joint-scalar PDF simulations using the same mixing models and experimental data. Moreover, the sensitivity of the model to the particle number is examined. It is shown that MMC is less sensitive to the number of particles and can generally produce improved predictions of major and minor chemically reacting species with a lower number of particles.


Multiple mapping conditioning Mixing models Probability density function approach Sandia flame F 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust Inst 27, 1087–1095 (1998)CrossRefGoogle Scholar
  2. 2.
    Barlow, R., Frank, J., Karpetis, A., Chen, J.Y.: Piloted methane/air jet flames: Transport effects and aspects of scalar structure. Combust. Flame 143, 433–449 (2005)CrossRefGoogle Scholar
  3. 3.
    Cao, R., Pope, S.: The influence of chemical mechanisms on pdf calculations of nonpremixed piloted jet flames. Combust. Flame 143, 450–470 (2005)CrossRefGoogle Scholar
  4. 4.
    Cao, R., Wang, H., Pope, S.: The effect of mixing models in pdf calculations of piloted jet flames. Proc. Combust Inst 31, 15431550 (2007)CrossRefGoogle Scholar
  5. 5.
    Chen, H., Chen, S., Kraichnan, R.: Probability distribution of a stochastically advected scalar field. Phys. Rev. Lett. 63(24), 2657–60 (1989)CrossRefGoogle Scholar
  6. 6.
    Sung, C.J., Law, C., Chen, J.: Augmented reduced mechanisms for no emission in methane oxidation. Combust. Flame 125(1–2), 906–919 (2001)CrossRefGoogle Scholar
  7. 7.
    Cleary, M., Kronenburg, A.: Hybrid multiple mapping conditioning on passive and reactive scalars. Combust. Flame 151(4), 623–638 (2007)CrossRefGoogle Scholar
  8. 8.
    Corrsin, S.: J. Aeronaut. Sci. 18, 417 (1951)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Curl, R., Miller, R., Ralph, J., Towell, G.: Dispersed phase mixing: Ii. measurements in organic dispersed systems. AIChE J. 9, 175–181 (1963)CrossRefGoogle Scholar
  10. 10.
    Dopazo, C.: Probability density function approach for a turbulent heated jet. centerline evolution. Phys. Fluids 18, 397–404 (1975)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gardiner, C.: Handbook of stochastic methods. Springer, New York (1984)Google Scholar
  12. 12.
    Ge, Y., Cleary, M., Klimenko, A.: Sparse-lagrangian {FDF} simulations of sandia flame e with density coupling. Proc. Combust. Inst. 33(1), 1401–1409 (2011)CrossRefGoogle Scholar
  13. 13.
    Ge, Y., Cleary, M., Klimenko, A.: A comparative study of sandia flame series (df) using sparse-lagrangian {MMC} modelling. Proc. Combust. Inst. 34(1), 1325–1332 (2013)CrossRefGoogle Scholar
  14. 14.
    Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168259 (2010)CrossRefGoogle Scholar
  15. 15.
    He, G.W., Zhang, Z.F.: Two-point closure strategy in the mapping closure approximation approach. Phys. Rev. E 70(036), 309 (2004)Google Scholar
  16. 16.
    Janicka, J., Kolbe, W., Kollmann, W.: Closure of the transport equation for the probability density function of turbulent scalar fields. J. Nonequil. Thermodyn 4, 47–66 (1979)zbMATHCrossRefGoogle Scholar
  17. 17.
    Klimenko, A.: Modern modelling of turbulent non-premixed combustion and reaction of pollution emission. Proceedings of Clean Air VII, Lisbon, Portugal (2003)Google Scholar
  18. 18.
    Klimenko, A: Matching the conditional variance as a criterion for selecting parameters in the simplest multiple mapping conditioning models. Phys. Fluids 16(12), 4754–4757 (2004)CrossRefGoogle Scholar
  19. 19.
    Klimenko, A.: On simulating scalar transport by mixing between lagrangian particles. Phys. Fluids 19(3), 31,702 (2007)CrossRefGoogle Scholar
  20. 20.
    Klimenko, A., Bilger, R.: Conditional moment closure for turbulent combustion. Prog. Energy Combust. Sci 25(6), 595–687 (1999)CrossRefGoogle Scholar
  21. 21.
    Klimenko, A., Pope, S.: The modeling of turbulent reactive flows based on multiple mapping conditioning. Phys. Fluids 15(7), 1907–1925 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kronenburg, A., Cleary, M.J.: Multiple mapping conditioning for flames with partial premixing. Combust. Flame 155, 215–231 (2008)CrossRefGoogle Scholar
  23. 23.
    Launder, B., Spalding, D.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)zbMATHCrossRefGoogle Scholar
  24. 24.
    Lindstedt, R., Louloudi, S., Vaos, E.M.: Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proc. Combust Inst 28(1), 149156 (2000)CrossRefGoogle Scholar
  25. 25.
    Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid finite-volume/particle method for the pdf equations of turbulent reactive flows. J. Comp. Phys. 154, 342371 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Norris, A., Pope, S.: Turbulent mixing model based on ordering pairing. Combust. Flame 83(1–2), 27–42 (1991)CrossRefGoogle Scholar
  27. 27.
    Pope, S.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11(2), 119–192 (1985)CrossRefGoogle Scholar
  28. 28.
    Pope, S.: Mapping closures for turbulent mixing and reaction. Theor. Comput. Fluid Dyn 2(5–6), 255–70 (1991)zbMATHCrossRefGoogle Scholar
  29. 29.
    Pope, S.B.: A model for turbulent mixing based on shadow-position conditioning. Phys. Fluids 25(11) (2013)Google Scholar
  30. 30.
    Raman, V., Pitsch, H.: A consistent les/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc Combust Inst 31, 1711–1719 (2007)CrossRefGoogle Scholar
  31. 31.
    Subramaniam, S., Pope, S.: A mixing model for turbulent reactive flows based on euclidean minimum spanning trees. Combust. Flame 115(4), 487–514 (1999)CrossRefGoogle Scholar
  32. 32.
    Vogiatzaki, K., Cleary, M., Kronenburg, A., Kent, J.: Modeling of scalar mixing in turbulent jet flames by multiple mapping conditioning. Phys. Fluids 21(2) (2009)Google Scholar
  33. 33.
    Vogiatzaki, K., Kronenburg, A., Navarro-Martinez, S., Jones, W.: Stochastic multiple mapping conditioning for a piloted, turbulent jet diffusion flame. Proc. Combust Inst 33(1), 1523–1531 (2011)CrossRefGoogle Scholar
  34. 34.
    Wandel, A., Klimenko, A.: Testing multiple mapping conditioning mixing for monte carlo probability density function simulations. Phys. Fluids 17(12), 128,105 (2005)CrossRefGoogle Scholar
  35. 35.
    Wandel, A.P., Lindstedt, R.P.: Hybrid multiple mapping conditioning modeling of local extinction. Proc. Combust. Inst. 34(1), 1365–1372 (2013)CrossRefGoogle Scholar
  36. 36.
    Xu, J., Pope, S.B.: Pdf calculations of turbulent nonpremixed flames with local extinction. Combust. Flame 123(3), 281–307 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • K. Vogiatzaki
    • 1
    Email author
  • S. Navarro-Martinez
    • 2
  • S. De
    • 3
  • A. Kronenburg
    • 3
  1. 1.School of Engineering and Mathematical SciencesCity UniversityLondonUK
  2. 2.Mechanical Engineering DepartmentImperial College LondonLondonUK
  3. 3.Institut für Technische Verbrennung, University of StuttgartStuttgartGermany

Personalised recommendations