Advertisement

Flow, Turbulence and Combustion

, Volume 96, Issue 2, pp 469–502 | Cite as

Transported PDF Modeling of Ethanol Spray in Hot-Diluted Coflow Flame

  • Likun MaEmail author
  • Bertrand Naud
  • Dirk Roekaerts
Open Access
Article

Abstract

This paper presents a numerical modeling study of one ethanol spray flame from the Delft Spray-in-Hot-Coflow (DSHC) database, which has been used to study Moderate or Intense Low-oxygen Dilution (MILD) combustion of liquid fuels (Correia Rodrigues et al. Combust. Flame 162(3), 759–773, 2015). A “Lagrangian-Lagrangian” approach is adopted where both the joint velocity-scalar Probability Density Function (PDF) for the continuous phase and the joint PDF of droplet properties are modeled and solved. The evolution of the gas phase composition is described by a Flamelet Generated Manifold (FGM) and the interaction by exchange with the mean (IEM) micro-mixing model. Effects of finite conductivity on droplet heating and evaporation are accounted for. The inlet boundary conditions starting in the dilute spray region are obtained from the available experimental data together with the results of a calculation of the spray including the dense region using ANSYS Fluent 15. A method is developed to determine a good estimation for the initial droplet temperature. The inclusion of the “1/3” rule for droplet evaporation and dispersion models is shown to be very important. The current modeling approach is capable of accurately predicting main properties, including mean velocity, droplet mean diameter and number density. The gas temperature is under-predicted in the region where the enthalpy loss due to droplet evaporation is important. The flame structure analysis reveals the existence of two heat release regions, respectively having the characteristics of a premixed and a diffusion flame. The experimental and modeled temperature PDFs are compared, highlighting the capabilities and limitations of the proposed model.

Keywords

Spray FGM Transported PDF MILD combustion Evaporation 

Notes

References

  1. 1.
    Abramzon, B., Sirignano, W.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transf. 32(9), 1605–1618 (1989)CrossRefGoogle Scholar
  2. 2.
    Anand, G., Jenny, P.: Stochastic modeling of evaporating sprays within a consistent hybrid joint PDF framework. J. Comput. Phys. 228(6), 2063–2081 (2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    Baba, Y., Kurose, R.: Analysis and flamelet modelling for spray combustion. J. Fluid Mech. 612, 45–79 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Beishuizen, N.A.: PDF modelling and particle-turbulence interaction of turbulent spray flames. Ph.D. thesis, Delft University of Technology (2008)Google Scholar
  5. 5.
    Bhattacharjee, S., Haworth, D.C.: Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method. Combust. Flame 160(10), 2083–2102 (2013)CrossRefGoogle Scholar
  6. 6.
    Cavaliere, A, de Joannon, M.: Mild combustion. Prog. Energy Combust. Sci. 30(4), 329–366 (2004)CrossRefGoogle Scholar
  7. 7.
    CHEM1D: A one-dimensional laminar flame code, Eindhoven University of Technology. URL < http://www.combustion.tue.nl/chem1d/ >
  8. 8.
    Chrigui, M., Gounder, J., Sadiki, A., Masri, A.R., Janicka, J.: Partially premixed reacting acetone spray using LES and FGM tabulated chemistry. Combust. Flame 159(8), 2718–2741 (2012)CrossRefGoogle Scholar
  9. 9.
    Chrigui, M., Masri, A.R., Sadiki, A., Janicka, J.: Large Eddy Simulation of a polydisperse ethanol spray flame. Flow Turbul. Combust. 90(4), 813–832 (2013)CrossRefGoogle Scholar
  10. 10.
    Correia Rodrigues, H., Tummers, M.J., van Veen, E.H., Roekaerts, D.: Spray flame structure in conventional and hot-diluted combustion regime. Combust. Flame 162, 759–773 (2015). doi: 10.1016/j.combustflame.2014.07.033 CrossRefGoogle Scholar
  11. 11.
    De, S., Kim, S.H.: Large eddy simulation of dilute reacting sprays: Droplet evaporation and scalar mixing. Combust. Flame 160(10), 2048–2066 (2013)CrossRefGoogle Scholar
  12. 12.
    de Joannon, M., Saponaro, A., Cavaliere, A.: Zero-dimensional analysis of diluted oxidation of methane in rich conditions. Proc. Combust. Inst. 28, 1639–1646 (2000)CrossRefGoogle Scholar
  13. 13.
    de Meester, R.: Analysis of scalar mixing in hybrid RANS-PDF calculations of turbulent gas and spray Flames. Ph.D. thesis, University Gent (2012)Google Scholar
  14. 14.
    de Meester, R., Naud, B., Maas, U., Merci, B.: Transported scalar PDF calculations of a swirling bluff body flame SM1 with a reaction diffusion manifold. Combust. Flame 159(7), 2415–2429 (2012)CrossRefGoogle Scholar
  15. 15.
    Dombrovsky, L.A., Sazhin, S.S.: A parabolic temperature profile model for heating of droplets. J. Heat Transf. 125(3), 535 (2003)CrossRefGoogle Scholar
  16. 16.
    Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)CrossRefGoogle Scholar
  17. 17.
    Duwig, C., Dunn, M.J.: Large Eddy Simulation of a premixed jet flame stabilized by a vitiated co-flow: evaluation of auto-ignition tabulated chemistry. Combust. Flame 160(12), 2879–2895 (2013)CrossRefGoogle Scholar
  18. 18.
    Faeth, G.: Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9, 1–76 (1983)CrossRefGoogle Scholar
  19. 19.
    Franzelli, B., Fiorina, B., Darabiha, N.: A tabulated chemistry method for spray combustion. Proc. Combust. Inst. 34(1), 1659–1666 (2013)CrossRefGoogle Scholar
  20. 20.
    Ge, H.W., Gutheil, E.: Simulation of a turbulent spray flame using coupled PDF gas phase and spray flamelet modeling. Combust. Flame 153(1–2), 173–185 (2008)CrossRefGoogle Scholar
  21. 21.
    Ge, H.W., Hu, Y., Gutheil, E.: Joint gas-phase velocity-scalar PDF modeling for turbulent evaporating spray flows. Combust. Sci. Technol. 184(10–11), 1664–1679 (2012)CrossRefGoogle Scholar
  22. 22.
    Gutheil, E., Sirignano, W.: Counterflow spray combustion modeling with detailed transport and detailed chemistry. Combust. Flame 113(1–2), 92–105 (1998)CrossRefGoogle Scholar
  23. 23.
    Haworth, D.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36(2), 168–259 (2010)CrossRefGoogle Scholar
  24. 24.
    Heye, C., Raman, V., Masri, A.R.: LES/probability density function approach for the simulation of an ethanol spray flame. Proc. Combust. Inst. 34(1), 1633–1641 (2013)CrossRefGoogle Scholar
  25. 25.
    Hollmann, C., Gutheil, E.: Modeling of turbulent spray flames including detailed chemistry. In: 26th Symposium (International) on Combustion, pp. 1731–1738 (1996)Google Scholar
  26. 26.
    Hollmann, C., Gutheil, E.: Flamelet-modeling of turbulent spray diffusion flames based on a laminar spray flame library. Combust. Sci. Technol. 135(January 2011), 175–192 (1998)CrossRefGoogle Scholar
  27. 27.
    Ihme, M., See, Y.C.: Prediction of autoignition in a lifted methane/air flame using an unsteady flamelet/progress variable model. Combust. Flame 157(10), 1850–1862 (2010)CrossRefGoogle Scholar
  28. 28.
    Jenny, P., Roekaerts, D., Beishuizen, N.: Modeling of turbulent dilute spray combustion. Prog. Energy Combust. Sci. 38(6), 846–887 (2012)CrossRefGoogle Scholar
  29. 29.
    Jones, W., Marquis, A., Vogiatzaki, K.: Large-eddy simulation of spray combustion in a gas turbine combustor. Combust. Flame 161(1), 222–239 (2014)CrossRefGoogle Scholar
  30. 30.
    Law, C.: Recent advances in droplet vaporization and combustion. Prog. Energy Combust. Sci. 8(3), 171–201 (1982)CrossRefGoogle Scholar
  31. 31.
    Luo, K., Fan, J., Cen, K.: New spray flamelet equations considering evaporation effects in the mixture fraction space. Fuel 103, 1154–1157 (2013)CrossRefGoogle Scholar
  32. 32.
    Ma, L., Zhu, S., Tummers, M.J., van der Meer, T.H., Roekaerts, D.: Numerical investigation of ethanol spray-in-hot-coflow flame using steady flamelet model. In: Eighth Mediterranean Combustion Symposium (2013)Google Scholar
  33. 33.
    Marinov, N.M.: A detailed chemical kinetic model for high temperature ethanol oxidation. Int. J. Chem. Kinet. 31(3), 183–220 (1998)CrossRefMathSciNetGoogle Scholar
  34. 34.
    Miller, R.S., Harstad, K., Bellan, J.: Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations. Int. J. Multiphase Flow 24, 1025–1055 (1998)CrossRefzbMATHGoogle Scholar
  35. 35.
    Minier, J.P., Peirano, E.: The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 352, 1–214 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Naud, B.: PDF modeling of turbulent sprays and flames using a particle stochastic approach. Ph.D. thesis, Delft University of Technology (2003)Google Scholar
  37. 37.
    Naud, B.: Particle dispersion modelling based on the Generalised Langevin Model for the seen velocity. Turbul. Heat Mass Transf. 7, 1 (2012)Google Scholar
  38. 38.
    Naud, B., Jiménez, C., Roekaerts, D.: A consistent hybrid PDF method: implementation details and application to the simulation of a bluff-body stabilised flame. Prog. Comput. Fluid Dyn. 6, 146–157 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    Naud, B., Merci, B., Roekaerts, D.: Generalised Langevin Model in correspondence with a chosen standard scalar-flux second-Moment closure. Flow Turbul. Combust. 85(3–4), 363–382 (2010)CrossRefzbMATHGoogle Scholar
  40. 40.
    Naud, B., Novella, R., Pastor, J.M., Winklinger, J.F.: RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combust. Flame, in press. doi: 10.1016/j.combustflame.2014.09.014(2015)
  41. 41.
    van Oijen, J.A.: Flamelet-generated manifolds: development and application to premixed laminar flames. Ph.D. thesis, Eindhoven University of Technology (2002)Google Scholar
  42. 42.
    van Oijen, J.A, de Goey, L.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRefGoogle Scholar
  43. 43.
    Olguin, H., Gutheil, E.: Influence of evaporation on spray flamelet structures. Combust. Flame 161(4), 987–996 (2014)CrossRefGoogle Scholar
  44. 44.
    Pei, Y., Hawkes, E.R., Kook, S.: A comprehensive study of effects of mixing and chemical kinetic models on predictions of n-heptane jet ignitions with the PDF method. Flow Turbul. Combust. 91(2), 249–280 (2013)CrossRefGoogle Scholar
  45. 45.
    Pei, Y., Hawkes, E.R., Kook, S.: Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proc. Combust. Inst. 34(2), 3039–3047 (2013)CrossRefGoogle Scholar
  46. 46.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Pope, S.B.: Small scales, many species and the manifold challenges of turbulent combustion. Proc. Combust. Inst. 34(1), 1–31 (2013)CrossRefGoogle Scholar
  48. 48.
    Reveillon, J., Vervisch, L.: Analysis of weakly turbulent dilute-spray flames and spray combustion regimes. J. Fluid Mech. 537, 317–347 (2005)CrossRefzbMATHGoogle Scholar
  49. 49.
    Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32(2), 162–214 (2006)CrossRefMathSciNetGoogle Scholar
  50. 50.
    Shirolkar, J.S., Coimbra, C.F.M., Mcquay, M.Q.: Flundamental aspects of modeling turbulent particle dispersion in dilute flows. Prog. Energy Combust. Sci. 22 (96), 363–399 (1996)CrossRefGoogle Scholar
  51. 51.
    Sirignano, W.A.: Advances in droplet array combustion theory and modeling. Prog. Energy Combust. Sci., 1–33 (2014)Google Scholar
  52. 52.
    Stöllinger, M., Naud, B., Roekaerts, D., Beishuizen, N., Heinz, S.: PDF modeling and simulations of pulverized coal combustion—Part 2: application. Combust. Flame 160(2), 396–410 (2013)CrossRefGoogle Scholar
  53. 53.
    Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. Ser. 5 36(223), 507–531 (1893)CrossRefzbMATHGoogle Scholar
  54. 54.
    Vreman, A., van Oijen, J.A, de Goey, L., Bastiaans, R.: Direct numerical simulation of hydrogen addition in turbulent premixed Bunsen flames using flamelet-generated manifold reduction. Int. J. Hydrog. Energy 34(6), 2778–2788 (2009)CrossRefGoogle Scholar
  55. 55.
    Watanabe, H., Kurose, R., Hwang, S., Akamatsu, F.: Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame 148(4), 234–248 (2007)CrossRefGoogle Scholar
  56. 56.
    Weber, R., Orsino, S., Lallemant, N., Verlaan, A.: Combustion of natural gas with high-temperature air and large quantities of flue gas. Proc. Combust. Inst. 28 (1), 1315–1321 (2000)CrossRefGoogle Scholar
  57. 57.
    Weber, R., Smart, J.P., Kamp, W.V.: On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proc. Combust. Inst. 30(2), 2623–2629 (2005)CrossRefGoogle Scholar
  58. 58.
    Wünning, J.A., Wünning, J.G.: Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. 23(1), 81–94 (1997)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Department of Process and EnergyDelft University of TechnologyDelftThe Netherlands
  2. 2.Modeling and Numerical Simulation GroupEnergy DepartmentCiematSpain

Personalised recommendations