Flow, Turbulence and Combustion

, Volume 95, Issue 2–3, pp 211–229 | Cite as

Compressible-Flow DNS with Application to Airfoil Noise

  • R. D. Sandberg


Airfoil self-noise is the noise produced by the interaction between an airfoil with its own boundary layers and wake. Self-noise is of concern as it is an important contributor to the overall noise in many applications, e.g. wind turbines, cooling fan blades, or air frames, to name a few. The continued growth of available computing power has made direct numerical simulations (DNS) of compressible flows with application to airfoil noise possible. Challenges associated with such simulations and numerical details of a DNS code that is able to exploit modern high-performance computing systems are presented. Results obtained from DNS of flow over NACA-0012 airfoils at moderate Reynolds number are used to evaluate the accuracy of approximations commonly made in deriving trailing edge noise theories. The data are also used to identify additional noise sources present in airfoil configurations. Finally, DNS are employed to study the noise reducing effect of trailing-edge noise serrations, indicating that the noise reduction is mainly due to a changed scattering mechanisms and not a change in the incidence turbulence field.


DNS Aeroacoustics Airfoil noise High-performance computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amiet, R.: High-frequency thin airfoil theory for subsonic flow. AIAA J. 14(8), 1076–1082 (1976a)zbMATHCrossRefGoogle Scholar
  2. 2.
    Amiet, R.: Noise due to turbulent flow past a trailing edge. J. Sound Vib. 47(3) (387)Google Scholar
  3. 3.
    Carpenter, M.H., Nordström, J., Gottlieb, D.: A stable and conservative interface treatment of arbitrary spatial accuracy. J. Comp. Phys. 148(2), 341–365 (1999)zbMATHCrossRefGoogle Scholar
  4. 4.
    Colonius, T., Lele, S.: Computational aeroacoustics: Progress on nonlinear problems of sound generation. Prog. Aerosp. Sci. 40(6), 345–416 (2004)CrossRefGoogle Scholar
  5. 5.
    Crighton, D.G.: Goals for computational aeroacoustics Computational aeroacousitcs: Algorithms and applications, proceedings of the 1st IMACS symposium on computational aeroacoustics. Elsevier Science Publishers, Amsterdam (1986)Google Scholar
  6. 6.
    Curle, N.: The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. 231, 505–514 (1955)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Ewert, R.: Broadband slat noise prediction based on CAA and stochastic sound sources from a fast random particle-mesh (RPM) method. Comput. Fluids 37(4), 369–387 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ewert, R., Dierke, J., Siebert, J., Neifeld, A., Appel, C., Siefert, M., Kornow, O.: CAA broadband noise prediction for aeroacoustic design. J. Sound Vib. 330(17), 4139–4160 (2011)CrossRefGoogle Scholar
  9. 9.
    Williams, J.F., Hall, L.: Aerodynamic sound generation by turbulent flow in the vicinity of a scattering half plane. J. Fluid Mech. 40(4), 657–670 (1970)zbMATHCrossRefGoogle Scholar
  10. 10.
    Freund, J.: Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9. J. Fluid Mech. 438, 277–305 (2001)zbMATHCrossRefGoogle Scholar
  11. 11.
    Herr, M., Dobrzynski, W.: Experimental investigations in low-noise trailing-edge design. AIAA J. 43(6), 1167–1175 (2005)CrossRefGoogle Scholar
  12. 12.
    Howe, M.S.: Noise produced by a sawtooth trailing edge. J. Acoust. Soc. Am. 90, 482 (1991)CrossRefGoogle Scholar
  13. 13.
    Hu, Z., Morfey, C., Sandham, N.: Sound radiation in turbulent channel flows. J. Fluid Mech. 475, 269–302 (2003)zbMATHCrossRefGoogle Scholar
  14. 14.
    Jones, L., Sandham, N., Sandberg, R.: Acoustic source identification for transitional airfoil flows using cross correlations. AIAA J. 48, 10 (2010a)Google Scholar
  15. 15.
    Jones, L.E.: Numerical studies of the flow around an airfoil at low Reynolds number, PhD thesis. University of Southampton (2007)Google Scholar
  16. 16.
    Jones, L.E., Sandberg, R.: Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations. J. Fluid Mech. 706, 295–322 (2012)zbMATHCrossRefGoogle Scholar
  17. 17.
    Jones, L.E., Sandberg, R., Sandham, N.: Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175–207 (2008)zbMATHCrossRefGoogle Scholar
  18. 18.
    Jones, L.E., Sandberg, R., Sandham, N.: Stability and receptivity characteristics of a laminar separation bubble on an aerofoil. J. Fluid Mech. 648, 257–296 (2010b)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kennedy, C., Carpenter, M., Lewis, R.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Kennedy, C., Gruber, A.: Reduced aliasing formulations of the convective terms within the Navier–Stokes equations for a compressible fluid. J. Comp. Phys. 227, 1676–1700 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Kim, J., Lee, D.: Characteristic interface conditions for multiblock high-order computation on singular structured grid. AIAA J. 41(12), 2341–2348 (2003)CrossRefGoogle Scholar
  22. 22.
    Kim, J.W., Sandberg, R.D.: Efficient parallel computing with a compact finite difference scheme. Comput. Fluids 58, 70–87 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Lele, S. Computational Aeroacoustics: A Review, AIAA Paper 97–18 (1997)Google Scholar
  24. 24.
    Lighthill, M.J.: On sound generated aerodynamically I. General theory. Proc. R. Soc. London Ser. A: Math. Phys. Sci. 211A(1107), 564–587 (1952)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Lutz, T., Herrig, A., Würz, W., Kamruzzaman, M., Krämer, E.: Design and wind-tunnel verification of low-noise airfoils for wind turbines. AIAA J. 45 (4), 779–785 (2007)CrossRefGoogle Scholar
  26. 26.
    Marsden, O., Bogey, C., Bailly, C.: Direct noise computation of the turbulent flow around a zero-incidence airfoil. AIAA J. 46(4), 874–883 (2008)CrossRefGoogle Scholar
  27. 27.
    Moin, P., Mahesh, K.: Direct numerical simulation: A tool in turbulence research. Ann. Rev. Fluid Mech. 30(1), 539–578 (1998)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Oerlemans, S., Fisher, M., Maeder, T., Kogler, K.: Reduction of wind turbine noise using optimized airfoils and trailing-edge serrations. AIAA Paper 08-2819 (2008). 14th AIAA/CEAS Aeroacoustics Conference, Vancouver, MayGoogle Scholar
  29. 29.
    Peake, N., Kerschen, E.: Influence of mean loading on noise generated by the interaction of gusts with a flat-plate cascade: Upstream radiation. J. Fluid Mech. 347, 315–346 (1997)zbMATHCrossRefGoogle Scholar
  30. 30.
    Sandberg, R., Pichler, R., Chen, L., Johnstone, R., Michelassi, V.: Compressible direct numerical simulation of low-pressure turbines: Part I – methodology. J. Turbomach. 137, 051011–1–051011–10 (2015)CrossRefGoogle Scholar
  31. 31.
    Sandberg, R.D.: Numerical investigation of turbulent supersonic axisymmetric wakes. J. Fluid Mech. 702, 488–520 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Sandberg, R.D., Jones, L.E.: Direct numerical simulations of low Reynolds number flow over airfoils with trailing-edge serrations. J. Sound Vib. 330(16), 3818–3831 (2011). doi: 10.1016/j.jsv.2011.02.005 CrossRefGoogle Scholar
  33. 33.
    Sandberg, R.D., Jones, L.E., Sandham, N.: Direct numerical simulations of noise generated by turbulent flow over airfoils. AIAA Paper 2008–2861 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference), Vancouver, Canada (2008)Google Scholar
  34. 34.
    Sandberg, R.D., Jones, L.E., Sandham, N.D., Joseph, P.F.: Direct numerical simulations of tonal noise generated by laminar flow past airfoils. J. Sound Vib. 320(4–5), 838–858 (2009). doi: 10.1016/j.jsv.2008.09.003 CrossRefGoogle Scholar
  35. 35.
    Sandberg, R.D., Sandham, N.D.: Nonreflecting zonal characteristic boundary condition for direct numerical simulation of aerodynamic sound. AIAA J. 44(2), 402–405 (2006)CrossRefGoogle Scholar
  36. 36.
    Sandberg, R.D., Sandham, N.D.: Direct numerical simulation of turbulent flow past a trailing edge and the associated noise generation. J. Fluid Mech. 596, 353–385 (2008)zbMATHCrossRefGoogle Scholar
  37. 37.
    Sandham, N., Li, Q., Yee, H.: Entropy splitting for high-order numerical simulation of compressible turbulence. J. Comp. Phys. 178, 307–322 (2002)zbMATHCrossRefGoogle Scholar
  38. 38.
    Sandhu, H., Sandham, N.D.: Boundary conditions for spatially growing compressible shear layers. Report QMW-EP-1100, Faculty of Engineering, Queen Mary and Westfield College, University of London (1994)Google Scholar
  39. 39.
    Sinayoko, S., Kingan, M., Agarwal, A.: Trailing edge noise theory for rotating blades in uniform flow. Proc. R. Soc. A: Math Phys. Eng. Sci. 469(2157), 20130065 (2013)CrossRefGoogle Scholar
  40. 40.
    Tam, C.: Computational aeroacoustics: Issues and methods. AIAA J. 33(10), 1788–1796 (1995)zbMATHCrossRefGoogle Scholar
  41. 41.
    Wang, M., Freund, J.B., Lele, S.K.: Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483–512 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Wolf, W.R., Azevedo, J.L.F., Lele, S.K.: Convective effects and the role of quadrupole sources for aerofoil aeroacoustics. J. Fluid Mech. 708, 502–538 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  43. 43.
    Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)zbMATHCrossRefGoogle Scholar
  44. 44.
    Zhu, W., Heilskov, N., Shen, W., Sørensen, J.: Modeling of aerodynamically generated noise from wind turbines. J. Solar Energy Engineering 127, 517 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Aerodynamics and Flight Mechanics Research GroupUniversity of SouthamptonSouthamptonUK

Personalised recommendations