Flow, Turbulence and Combustion

, Volume 95, Issue 2–3, pp 193–209 | Cite as

Advances of PIV and 4D-PTV ”Shake-The-Box” for Turbulent Flow Analysis –the Flow over Periodic Hills

  • A. SchröderEmail author
  • D. Schanz
  • D. Michaelis
  • C. Cierpka
  • S. Scharnowski
  • C. J. Kähler


In order to increase the prediction capabilities of advanced numerical methods for turbulent wall bounded flows at relatively high Reynolds numbers accurate experimental validation data-sets including the full Reynolds stress tensor at high spatial resolution are strongly required. In particular the influence of pressure gradients and wall curvatures up to flow separation and the development of related shear layers need to be investigated experimentally in order to provide reliable data for the validation process but also to prove scaling laws, sub-grid- and turbulence-models. Furthermore, for advanced unsteady flow simulation methods (LES, DES, DNS etc.) the integration times and domains which are necessary for resolving flow features with very low spatial or temporal frequencies are often not sufficient for a fully converged solution. Consequently, the used experimental methods have to be able to resolve a large range of spatial and temporal scales for serving the code validation process. In a joint experiment within the European FP7 project AFDAR several advanced particle image velocimetry (PIV) and particle tracking velocimetry (PTV) methods have been successively applied to measure the flow within the ERCOFTAC test case Nr. 81 ”periodic hill” (PH) water tunnel at TU Munich delivering field data with high spatial and temporal resolution.


Turbulent channel flow Periodic hill PIV PTV Shake-The-Box 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernard, P.S., Handler, R.A.: Reynolds stress and the physics of turbulent momentum transport. J. Fluid Mech. 220, 99–124 (1990)CrossRefGoogle Scholar
  2. 2.
    Brasseur, J.G., Winston, L.: Kinematics and dynamics of small-scale vorticity and strain-rate structures in the transition from isotropic to shear turbulence. Fluid Dyn. Res. 36, 357 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills–Numerical and experimental study in a wide range of Reynolds numbers. Comp. Fluids 38, 433–457 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cierpka, C., Scharnowski, S., Manhart, M., Kähler, C.J.: On the significance of high spatial resolution to capture all relevant scales in the turbulent flow over periodic hills. In: 10th Int. Symp. on particle image velocimetry – PIV13, July 1-3., Delft, The Netherlands (2013)Google Scholar
  5. 5.
    Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwiseperiodic constrictions. J. Fluid Mech. 526, 9–66 (2005)CrossRefGoogle Scholar
  6. 6.
    Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Phil. Trans. R Soc. A 365, 647–664 (2007)zbMATHCrossRefGoogle Scholar
  7. 7.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the resolution limit of digital particle image velocimetry. Exp. Fluids 52, 1629–1639 (2012). doi: 10.1007/s00348-012-1280-x CrossRefGoogle Scholar
  8. 8.
    Kähler, C.J., Scharnowski, S., Cierpka, C.: On the uncertainty of digital PIV and PTV near walls. Exp. Fluids 52, 1641–1656 (2012). doi: 10.1007/s00348-012-1307-3 CrossRefGoogle Scholar
  9. 9.
    Liu, X., Katz, J.: Instantaneous pressure and material acceleration measurements using a four-exposure PIV system 41, 227–240 (2006)Google Scholar
  10. 10.
    Novara, M., Scarano, F.: A particle-tracking approach for accurate material derivative measurements with tomographic PIV. Exp. Fluids 54, 1584 (2013)CrossRefGoogle Scholar
  11. 11.
    Rapp, C., Manhart, M.: Flow over periodic hills: An experimental study. Exp. Fluids 51, 247–269 (2011)CrossRefGoogle Scholar
  12. 12.
    Schanz, D., Schröder, A., Gesemann, S., Michaelis, D., Wieneke, B.: Shake The Box: A highly efficient and accurate tomographic particle tracking velocimetry method using prediction of particle positions. In: 10th Int. Symp. on particle image velocimetry – PIV13, July 1-3., Delft, The Netherlands (2013a)Google Scholar
  13. 13.
    Schanz, D., Gesemann, S., Schröder, A., Wieneke, B., Novara, M.: Non-uniform optical transfer functions in particle imaging: Calibration and application to tomographic reconstruction. Meas. Sci. Technol. 24, 024009 (2013b)CrossRefGoogle Scholar
  14. 14.
    Schanz, D., Gesemann, S., Schröder, A.: Shake The Box - a 4D PTV algorithm: Accurate and ghostless reconstruction of Lagrangian tracks in densely seeded flows 17 th international symposium on applications of laser techniques to fluid mechanics, July 7-10, Lisbon, Portugal (2014)Google Scholar
  15. 15.
    Scharnowski, S., Hain, R., Kähler, C.J.: Reynolds stress estimation up to single-pixel resolution using PIV-measurements. Exp. Fluids 52, 985–1002 (2012)CrossRefGoogle Scholar
  16. 16.
    Scharnowski, S., Kähler, C.J.: Methods for estimating higher order moments from PIV data. In: 10th Int. Symp. on particle image velocimetry – PIV13, July 1-3, Delft, The Netherlands (2013)Google Scholar
  17. 17.
    Schröder, A., Schanz, D., Geisler, R., Willert, C., Michaelis, D.: Dual-Volume and Four-Pulse Tomo PIV using polarized laser lights (2013)Google Scholar
  18. 18.
    Schröder, A., Geisler, R., Staack, K., Elsinga, G., Scarano, F., Wieneke, B., Henning, A., Poelma, C., Westerweel, J.: Eulerian and Lagrangian views of a turbulent boundary layer flow using time-resolved tomographic PIV. Exp. Fluids 50, 1071–1091 (2011)CrossRefGoogle Scholar
  19. 19.
    Temmerman, L., Leschziner, M.A., Mellen, C.P., Fröhlich, J.: Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid 24, 157–180 (2003)CrossRefGoogle Scholar
  20. 20.
    Westerweel, J., Geelhoed, P.F., Lindken, R.: Single-pixel resolution ensemble correlation for micro-PIV applications. Exp. Fluids 37, 375–384 (2004)CrossRefGoogle Scholar
  21. 21.
    Wieneke, B.: Volume self-calibration for Stereo PIV and Tomographic PIV. Exp. Fluids 45, 549–556 (2007)CrossRefGoogle Scholar
  22. 22.
    Wieneke, B.: Iterative reconstruction of volumetric particle distribution. Meas. Sci. Technol. 24, 024008 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Experimental Methods, German Aerospace Center (DLR)Institute of Aerodynamics and Flow TechnologyGöttingenGermany
  2. 2.LaVision GmbHGöttingenGermany
  3. 3.Institute of Fluid Mechanics and AerodynamicsBundeswehr University MunichNeubibergGermany

Personalised recommendations