Flow, Turbulence and Combustion

, Volume 94, Issue 1, pp 175–198 | Cite as

LES Investigation of the Hysteresis Regime in the Cold Model of a Rotating-Pipe Swirl Burner

Article

Abstract

We investigate numerically the hydrodynamics of regime transitions of flow in a cold replica of a non-premixed swirl burner in which hysteresis was detected when transiting from an attached long flame to a short lifted flame and vice versa (Hübner et al. Exper. Thermal and Fluid Scie. 27, 481–489 2003 Tummers et al. Comb. Flame 156(2), 447–459 2009. The unconfined highly swirling annular jet is generated by rotating the outer pipe of the annular air supply at 4000 rpm, while gas is fed through an inner annulus. The imposed rotation number N=Uwall/U0 , controlled by the flow rate, ranged from 2.8 for the stable flame to 4.9 for the unstable flame. The large-eddy simulations (LES) results for two regimes, N = 2.8 and 3.26, agree well with the available experimental data, reproducing notably different sizes and strengths of the central recirculation bubbles. Just as in the experiment, the transients were simulated by a sudden imposition of the inflow mass flux that corresponds to the target hysteretic state at an intermediate rotation number. Contrary to the experimental findings in flame, where both the stable and unstable flames were observed at the same bulk flow parameters in the hysteresis region (N = 3.26), the LES of cold flow resulted in indistinguishable time-averaged flow patterns differing from the both initial states, indicating that in the configuration considered the hysteresis is associated with flame lift-off and reattachment. The analysis of the transients dynamics showed, however, that the flow undergoes different adjustments when approaching from the stable and unstable initial states, suggesting that the hydrodynamics is indeed the precursor of hysteresis. The sudden hysteretic change of the regime observed depends on whether the thermal effects will overrule the inertia of the strong near-nozzle vortex structures.

Keywords

Jets Vortex dynamics Turbulence simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Abdeli, Y.M., Masri, A.R.: Recirculation and flow field regimes of unconfined non-reacting swirling flows. Exper. Thermal and Fluid Scie. 27(5), 655–665 (2003)CrossRefGoogle Scholar
  2. 2.
    Al-Abdeli, Y.M., Masri, A.R.: Precession and recirculation in turbulent swirling isothermal jets. Comb. Sci. Tech. 176(5-6), 645–665 (2004)CrossRefGoogle Scholar
  3. 3.
    Billant, P., Chomaz, J.-M., Huerre, P.: Experimental study of vortex breakdown in swirling jets. J. Fluid Mech. 376, 183–219 (1998)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cheng, L., Dianat, M., Spencer, A., McGuirk, J.J.: Validation of les predictions of scalar mixing in high-swirl fuel injector flows. Flow Turb. Comb. 88(1-2), 143–168 (2012)CrossRefMATHGoogle Scholar
  5. 5.
    Falese, M., Gicquel, L.Y.M., Poinsot, T.: Les of bifurcation and hysteresis in confined annular swirling flows. Comp. Fluids 89, 167–178 (2014)CrossRefGoogle Scholar
  6. 6.
    Garcıa-Villalba, M., Frohlich: Les of a free annular swirling jet–dependence of coherent structures on a pilot jet and the level of swirl. Int. J. Heat Fluid Flow 27(5), 911–923 (2006)CrossRefGoogle Scholar
  7. 7.
    Garcıa-Villalba, M., Frohlich, J., Rodi, W.: Identification and analysis of coherent structures in the near field of a turbulent unconfined annular swirling jet using large eddy simulation. Phys. Fluids 18(5), 055103 (2006)CrossRefGoogle Scholar
  8. 8.
    Grinstein, F.F., Young, T.R., Gutmark, E.J., Li, G., Hsiao, G., Mongia, H.C.: Flow dynamics in a swirl combustor. J. Turb. 3(30), 1–19 (2002)Google Scholar
  9. 9.
    Hadžiabdić, M., Halilagić, M., Hanjalić, K.: RANS investigation of hysteresis of vortex breakdown in the cold model of a swirl burner. In: Hanjalic, K., et al. (eds.) In: Proceedings of turbulence heat and mass transfer’12 on ICHMT digital library online. Begell House Inc., New York (2012)Google Scholar
  10. 10.
    Hadžiabdić, M., Hanjalić, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221–260 (2008)MATHGoogle Scholar
  11. 11.
    Hadžiabdić, M., Hanjalić, K., Mullyadzhanov, R.: LES of turbulent flow in a concentric annulus with rotating outer wall. Int. J. Heat Fluid Flow 43, 74–84 (2013)CrossRefGoogle Scholar
  12. 12.
    Hermeth, S., Staffelbach, G., Gicquel, L.Y.M., Anisimov, V., Cirigliano, C., Poinsot, T.: Bistable swirled flames and influence on flame transfer functions. Comb. Flame 161(1), 184–196 (2014)CrossRefGoogle Scholar
  13. 13.
    Hübner, A.W.: (unfinished). PhD thesis. Delft University of Technology, The Netherlands (2010)Google Scholar
  14. 14.
    Hübner, A.W., Tummers, M., Hanjalić, K., Van der Meer, Th.H.: Experiments on a swirl stabilized turbulent flame. Exper. Thermal and Fluid Scie. 27, 481–489 (2003)CrossRefGoogle Scholar
  15. 15.
    Jones, W.P., Lyra, S., Navarro-Martinez, S.: Large eddy simulation of turbulent confined highly swirling annular flows. Flow Turb. Comb. 89(3), 361–384 (2012)CrossRefGoogle Scholar
  16. 16.
    Liang, H., Maxworthy, T.: An experimental investigation of swirling jets. J. Fluid Mech. 525, 115–159 (2005)CrossRefMATHGoogle Scholar
  17. 17.
    Lu, X., Wang, S., Sung, H.-G., Hsieh, S.-Y., Yang, V.: Large-eddy simulations of turbulent swirling flows injected into a dump chamber. J. Fluid Mech. 527, 171–195 (2005)CrossRefMATHGoogle Scholar
  18. 18.
    Lucca-Negro, O., O’Doherty, T.: Vortex breakdown: a review. Prog. Ener. Comb. Sci. 27(4), 431–481 (2001)CrossRefGoogle Scholar
  19. 19.
    Markovich, D.M., Abdurakipov, S.S., Chikishev, L.M., Dulin, V.M., Hanjalić, K.: A comparative POD and DMD analysis of low- and high-swirl confined flames and jets. Phys. Fluids 26(6), 065109 (2014)CrossRefGoogle Scholar
  20. 20.
    Moin, P., Apte, S.V.: Large-eddy simulation of realistic gas turbine combustors. AIAA Journ. 44(4), 698–708 (2006)CrossRefGoogle Scholar
  21. 21.
    Moureau, V., Domingo, P., Vervisch, L., Veynante, D.: DNS analysis of a Re=40,000 swirl burner In: Proceedings of Summer Program, CTR, pp 289–298. NASA Ames/Stanford University, Stanford (2010)Google Scholar
  22. 22.
    Oberleithner, K., Paschereit, C.O., Seele, R., Wygnanski, I.: Formation of turbulent vortex breakdown: intermittency, criticality, and global instability. AIAA Journ. 50(7), 1437–1452 (2012)CrossRefGoogle Scholar
  23. 23.
    Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R., Wygnanski, I.: Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383–414 (2011)CrossRefMATHGoogle Scholar
  24. 24.
    Pierce, Ch.D., Moin, P.: Large eddy simulation of a confined coaxial jet with swirl and heat release. AIAA, 2892 (1998)Google Scholar
  25. 25.
    Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  26. 26.
    Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Comb. Flame 137(4), 489–505 (2004)CrossRefGoogle Scholar
  27. 27.
    Sheen, H.J., Chen, W.J., Jeng, S.Y.: Recirculation zones of unconfined and confined annular swirling jets. AIAA Journ. 34(3), 572–579 (1996)CrossRefGoogle Scholar
  28. 28.
    Tummers, M., Hübner, A.W., Van Veen, E.H., Hanjalić, K., Van der Meer, Th.H.: Hysteresis and transition in swirling nonpremixed flames. Comb. Flame 156(2), 447–459 (2009)CrossRefGoogle Scholar
  29. 29.
    Vanierschot, M., Van den Bulck, E.: Hysteresis in flow patterns in annular swirling jets. Exper. Thermal and Fluid Scie. 31(6), 545–578 (2007a)Google Scholar
  30. 30.
    Vanierschot, M., Van den Bulck, E.: Influence of the nozzle geometry on the hysteresis of annular swirling jets. Comb. Sci. Tech. 179(8), 1451–1466 (2007b)CrossRefGoogle Scholar
  31. 31.
    Vanierschot, M., Van den Bulck, E.: Influence of swirl on the initial merging zone of a turbulent annular jet. Phys. Fluids 20(10) (2008)Google Scholar
  32. 32.
    Vanoverberghe, K.P., Van Den Bulck, E.V., Tummers, M.J.: Confined annular swirling jet combustion. Comb. Sci. Tech. 175(3), 545–578 (2003)CrossRefGoogle Scholar
  33. 33.
    Wang, P., Bai, X.-S., Wessman, M., Klingmann, J.: Large eddy simulation and experimental studies of a confined turbulent swirling flow. Phys. Fluids 16(9), 3306–3324 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. Mullyadzhanov
    • 1
    • 2
  • M. Hadžiabdić
    • 3
  • K. Hanjalić
    • 1
    • 4
  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Institute of Thermophysics SB RASNovosibirskRussia
  3. 3.International University of SarajevoSarajevoBosnia and Herzegovina
  4. 4.Chemical Engineering DepartmentDelft University of TechnologyBL DelftNetherlands

Personalised recommendations