Advertisement

Flow, Turbulence and Combustion

, Volume 94, Issue 1, pp 263–283 | Cite as

Multi-Scale High Intensity Turbulence Generator Applied to a High Pressure Turbulent Burner

  • Romain Fragner
  • Nicolas MazellierEmail author
  • Fabien Halter
  • Christian Chauveau
  • Iskender Gökalp
Article

Abstract

We report an experimental study dedicated to the investigation of the turbulent flow generated by a multi-scale grid and its interaction with a premixed flame. The multi-scale grid is made from the combination of three perforated plates shifted in space such that their mesh size and blockage ratio both increase in the direction of the mean flow. It is found that this multi-scale grid induces a nearly homogeneous and isotropic (at both large and small scales) in the potential core of an axisymmetric premixed burner. A comparison with a single-scale grid shows that the length scales characterizing the multi-scale grid generated turbulence are smaller than those measured downstream the single-scale grid, while the turbulent kinetic energy produced by the multi-scale grid is much larger. The energy distribution through scales is investigated by means of the second-order structure functions highlighting an increase of energy at each scale, which is even more pronounced at small scales. As emphasized by the third-order structure function, energy transfer through scales is significantly enhanced by the multi-scale forcing and results, in turns, to an exceptional fast decay of the turbulent kinetic energy. Our results are compatible with the self-preservation theory where the Taylor microscale is the characteristic length-scale. The potential of the multi-scale forcing is then assessed in a premixed methane-air flame. The influence of the turbulence onto the structure of the flame is evaluated via the turbulent flame speed. The results obtained for the multi-scale grid deviate from those obtained for single-scale grid suggesting that the flame structure may not undergo the influence of large scales alone, in agreement with recent observations of flame front wrinkling by [13].

Keywords

Grid-generated turbulence Multi-scale forcing Premixed combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batchelor, G.K., Townsend, A.A.: Decay of isotropic turbulence in the initial period. Proc. R. Soc. Lond. A 193, 539–558 (1948)CrossRefzbMATHGoogle Scholar
  2. 2.
    Bédat, B., Cheng, R.K.: Experimental study of premixed flames in intense isotropic turbulence. Comb. Flame 100(3), 485–494 (1995)CrossRefGoogle Scholar
  3. 3.
    Borghi, R.: On the structure and morphology of turbulent premixed flames. In:Recent advances in the aerospace sciences, pp 117–138. Springer, Berlin Heidelberg New York (1985)CrossRefGoogle Scholar
  4. 4.
    Bray, K.N.C.: The interaction between turbulence and combustion. In:Symposium (international)on Combustion, Elsevier, vol 17, pp. 223233Google Scholar
  5. 5.
    Buchhave, P., George, W.K., Lumley, J.L.: The measurement of turbulence with the laser-doppler anemometer. Ann. Rev. Fluid Mech 11(1), 443–503 (1979)CrossRefGoogle Scholar
  6. 6.
    Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84(2), 026322 (2011)CrossRefGoogle Scholar
  7. 7.
    Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503 (2012)CrossRefGoogle Scholar
  8. 8.
    Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682 (1966)CrossRefGoogle Scholar
  9. 9.
    Corrsin, S.: Turbulence: experimental methods. In Handbuch der Physik, 524–589 (1963)Google Scholar
  10. 10.
    Damköhler, G.: Influence of turbulence on the velocity flames in gas mixtures. Z. Elektrochem 46, 601–626 (1940)Google Scholar
  11. 11.
    Danaila, L., Antonia, R.A., Burattini, P.: Progress in studying small-scale turbulence using’exact’two-point equations. New J. Phys. 6(1), 128 (2004)CrossRefGoogle Scholar
  12. 12.
    Davidson, P.A.: The minimum energy decay rate in quasi-isotropic grid turbulence. Phys. Fluids 23, – (2011)Google Scholar
  13. 13.
    Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent bunsen flames. (in press) (2014)Google Scholar
  14. 14.
    George, W.K.: The decay of homogeneous isotropic turbulence. Phys. Fluids A 4(7), 1492–1509 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    George,W.K.,Wang, H.,Wollblad, C., Johansson, T.G.: Homogeneous turbulence and its relation to realizable flows. In: Proceedings of the 14th Australasian Fluid Mechanics Conference. Elsevier, University of Adelaide (2001)Google Scholar
  16. 16.
    Good, G.H., Warhaft, Z.: On the probability distribution function of the velocity field and its derivative in multi-scale turbulence. Phys. Fluids 23, – (2011)Google Scholar
  17. 17.
    Groth, J., Johansson, A.V.: Turbulence reduction by screens. J. Fluid Mech. 197, 139–155 (1988)CrossRefGoogle Scholar
  18. 18.
    Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31(1), 1369–1375 (2007)CrossRefGoogle Scholar
  19. 19.
    Halter, F., Chauveau, C., Gökalp, I.: Characterization of the effects of hydrogen addition in premixed methane/air flames. Int. J. of Hydrogen Energy 32(13), 2585–2592 (2007)CrossRefGoogle Scholar
  20. 20.
    Hearst, R.J., Lavoie, P.: Decay of turbulence generated by a square-fractal-element grid. J. Fluid Mech. 741, 567–584 (2014)CrossRefGoogle Scholar
  21. 21.
    Hurst, D., Vassilicos, J.C.: Scalings and decay of fractal-generated turbulence. Phys. Fluids 19, – (2007)Google Scholar
  22. 22.
    Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: Report no. sand85-8240. Sandia National Laboratories (1993)Google Scholar
  23. 23.
    Kee, R.J., Rupley, F.M., Miller, J.A.: Report no. sand89-8009b. Sandia National Laboratories (1989)Google Scholar
  24. 24.
    Kobayashi, H., Nakashima, T., Tamura, T., Maruta, K., Niioka, T.: Turbulence measurements and observations of turbulent premixed flames at elevated pressures up to 3.0 mpa. Comb. flame 108(1), 104–117 (1997)CrossRefGoogle Scholar
  25. 25.
    Krawczynski, J.F., Renou, B., Danaila, L.: The structure of the velocity field in a confined flow driven by an array of opposed jets. Phys. Fluids 22(4), – (2010)Google Scholar
  26. 26.
    Krogstad, P.A., Davidson, P.A.: Is grid turbulence saffman turbulence?. J. Fluid Mech. 642, 373–394 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Lachaux, T., Halter, F., Chauveau, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methane-air flames. Proc. Combust. Inst. 30(1), 819–826 (2005)CrossRefGoogle Scholar
  28. 28.
    Lavoie, P., Avallone, G., Gregorio, F., Romano, G.P., Antonia, R.A.: Spatial resolution of piv for the measurement of turbulence. Exp. Fluids 43(1), 39–51 (2007)CrossRefGoogle Scholar
  29. 29.
    Laws, E.M., Livesey, J.L.: Flow through screens. Ann. Rev. Fluid Mech. 10, 247–266 (1978)CrossRefGoogle Scholar
  30. 30.
    Liepmann, H.W., Robinson, M.S.: Counting methods and equipment for mean-value measurements in turbulence research. NACA TN, 3037 (1952)Google Scholar
  31. 31.
    Makita, H.: Realization of a large-scale turbulence field in a small wind tunnel. Fluid Dyn. Res. 8, 53–64 (1991)CrossRefGoogle Scholar
  32. 32.
    Malécot, Y., Auriault, C., Kahalerras, H., Gagne, Y., Chanal, O., Chabaud, B., Castaing, B.: A statistical estimator of turbulence intermittency in physical and numerical experiments. Eur. Phys. J. B 16(3), 549–561 (2000)CrossRefGoogle Scholar
  33. 33.
    Marshall, A., Venkateswaran, P., Noble, D., Seitzman, J., Lieuwen, T.: Development and characterization of a variable turbulence generation system. Exp. Fluids 51(3), 611–620 (2011)CrossRefGoogle Scholar
  34. 34.
    Mazellier, N., Vassilicos, J.C.: The turbulence dissipation constant is not universal because of its universal dependence on large-scale flow topology. Phys. Fluids 20(1), – (2008)Google Scholar
  35. 35.
    Mazellier, N., Vassilicos, J. C.: Turbulence without richardson-kolmogorov cascade. Phys. Fluids 22(1), – (2010)Google Scholar
  36. 36.
    Mazellier, N., Danaila, L., Renou, B.: Multi-scale energy injection: a new tool to generate intense homogeneous and isotropic turbulence for premixed combustion. J. Turbul 11, – (2010)Google Scholar
  37. 37.
    Mydlarski, L., Warhaft, Z.: On the onset of high-reynolds-number grid-generated wind tunnel turbulence. J. Fluid Mech. 320, 331–368 (1996)CrossRefGoogle Scholar
  38. 38.
    Pearson, B.R., Krogstad, P.-A., van de Water, W.: Measurements of the turbulent energy dissipation rate. Phys. Fluids 14(3), 1288–1290 (2002)CrossRefGoogle Scholar
  39. 39.
    Poinsot, T., Veynante, D., Candel, S.: Diagrams of premixed turbulent combustion based on direct simulation. In:Symposium (international) on combustion, Vol. 23. Elsevier (1991)Google Scholar
  40. 40.
    Pope, S.B.: Turbulent flows. Cambridge University Press, New-York (2000)CrossRefzbMATHGoogle Scholar
  41. 41.
    Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 23, – (1944)Google Scholar
  42. 42.
    Rice, S.O.: Mathematical analysis of random noise. Bell Syst. Tech. J. 24, – (1945)Google Scholar
  43. 43.
    Shepherd, I.G., Cheng, R.K., Plessing, T., Kortschik, C., Peters, N.: Premixed flame front structure in intense turbulence. Proc. Combust. Inst. 29(2), 1833–1840 (2002)CrossRefGoogle Scholar
  44. 44.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Lissianski, V.Z.Q. (1999). http://www.me.berkeley.edu/gri_mech/
  45. 45.
    Sreenivasan, K. R.: On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27(5), 1048–1051 (1984)CrossRefMathSciNetGoogle Scholar
  46. 46.
    Sreenivasan, K.R., Prabhu, A., Narasimha, R.: Zero-crossings in turbulent signals. J Fluid Mech 137, 251–272 (1983)CrossRefGoogle Scholar
  47. 47.
    Tennekes, H., Lumley, J.L.: A first course in turbulence. MIT press, Cambridge, MA (1972)Google Scholar
  48. 48.
    Valente, P.C., Vassilicos, J.C.: The decay of turbulence generated by a class of multiscale grids. J. Fluid Mech. 687, 300–340 (2011)CrossRefzbMATHGoogle Scholar
  49. 49.
    Wyngaard, J.C.: Measurement of small-scale turbulence structure with hot wires. J. Phys. E: Scientific Instruments 1(11), 1105 (1968)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Romain Fragner
    • 1
  • Nicolas Mazellier
    • 2
    Email author
  • Fabien Halter
    • 1
    • 2
  • Christian Chauveau
    • 1
  • Iskender Gökalp
    • 1
  1. 1.CNRS, ICARE, 1COrléans CedexFrance
  2. 2.University Orléans, ENSI de BourgesOrléansFrance

Personalised recommendations