Flow, Turbulence and Combustion

, Volume 93, Issue 1, pp 171–187 | Cite as

Forced Convection Heat Transfer from a Finite-Height Cylinder

  • Manuel García-VillalbaEmail author
  • Guillermo Palau-Salvador
  • Wolfgang Rodi
Original Paper


This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.


Large-eddy simulation Heat transfer Forced convection Finite-height cylinder 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ames, F., Dvorak, L.: Turbulent transport in pin fin arrays: experimental data and predictions. J. Turbomach. 128(1), 71–81 (2006)CrossRefGoogle Scholar
  2. 2.
    Armstrong, J., Winstanley, D.: A review of staggered array pin fin heat transfer for turbine cooling applications. J. Turbomach. 110, 94 (1988)CrossRefGoogle Scholar
  3. 3.
    Breuer, M., Rodi, W.: Large eddy simulation of complex turbulent flows of practical interest. In: Hirschel, E. (ed.) Flow Simulation with High Performance Computers II, Notes on Numerical Fluid Mechanics, Vol. 52, pp 258–274. Vieweg, Braunschweig (1996)CrossRefGoogle Scholar
  4. 4.
    Chen, S., Sanitjai, S., Ghosh, K., Goldstein, R.: Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: uniform-diameter circular cylinder. Appl. Therm. Eng. 49, 73–78 (2012)CrossRefGoogle Scholar
  5. 5.
    Delibra, G., Hanjalic, K., Borello, D., Rispoli, F.: Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment. Int. J. Heat Fluid Flow 31(5), 740–753 (2010)CrossRefGoogle Scholar
  6. 6.
    Denev, J.A., Fröhlich, J., Bockhorn, H.: Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys. Fluids 21, 015101 (2009)Google Scholar
  7. 7.
    Donnert, G.D., Kappler, M., Rodi, W.: Measurement of tracer concentration in the flow around finite-height cylinders. J. Turbul. 8, 33 (2007)CrossRefGoogle Scholar
  8. 8.
    Frederich, O., Thiele, F.: Turbulent flow dynamics caused by a truncated cylinder. Int. J. Heat Fluid Flow 32(3), 546–557 (2011)CrossRefGoogle Scholar
  9. 9.
    Fröhlich, J., García-Villalba, M., Rodi, W.: Scalar mixing and large–scale coherent structures in a turbulent swirling jet. Flow Turbul. Combust. 80, 47–59 (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fröhlich, J., Rodi, W.: LES of the flow around a cylinder of finite height. Int. J. Heat Fluid Flow 25, 537–548 (2004)CrossRefGoogle Scholar
  11. 11.
    García-Villalba, M., Fröhlich, J.: LES of a free annular swirling jet–Dependence of coherent structures on a pilot jet and the level of swirl. Int. J. Heat Fluid Flow 27(5), 911–923 (2006)CrossRefGoogle Scholar
  12. 12.
    García-Villalba, M., Li, N., Rodi, W., Leschziner, M.A.: Large eddy simulation of separated flow over a three-dimensional axisymmetric hill. J. Fluid Mech. 627, 55–96 (2009)CrossRefzbMATHGoogle Scholar
  13. 13.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)CrossRefzbMATHGoogle Scholar
  14. 14.
    Hinckel, J.N., Nagamatsu, H.T.: Heat transfer in the stagnation region of the junction of a circular cylinder perpendicular to a flat plate. Int. J. Heat Mass Tran. 29(7), 999–1005 (1986)CrossRefGoogle Scholar
  15. 15.
    Hinterberger, C.: Dreidimensionale und tiefengemittelte Large-eddy-simulation von flachwasserströmungen. University of Karlsruhe (2004). Ph.D. thesisGoogle Scholar
  16. 16.
    Hölscher, N., Niemann, H.J.: Some aspects about the flow around a surface-mounted circular cylinder in a turbulent shear flow. In: Proceedings of 6th Symp. Int. Turbulent Shear Flows, ToulouseGoogle Scholar
  17. 17.
    Krajnovic, S.: Flow around a tall finite cylinder explored by large eddy simulation. J. Fluid Mech. 676, 294–317 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lilly, D.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633–635 (1992)CrossRefGoogle Scholar
  19. 19.
    Morgan, V.T.: The overall convective heat transfer from smooth circular cylinders. Adv. Heat Tran. 11, 199–264 (1975)CrossRefGoogle Scholar
  20. 20.
    Ničeno, B., Dronkers, A., Hanjalić, K.: Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large eddy simulation. Int. J. Heat Fluid Flow 23(2), 173–185 (2002)CrossRefGoogle Scholar
  21. 21.
    Palau-Salvador, G., García-Villalba, M., Rodi, W.: Scalar transport from point sources in the flow around a finite-height cylinder. Environ. Fluid Mech. 11, 611–625 (2011)CrossRefGoogle Scholar
  22. 22.
    Palau-Salvador, G., Stoesser, T., Fröhlich, J., Kappler, M., Rodi, W.: Large-eddy simulations and experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84, 239–275 (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Pattenden, R., Turnock, S., Zhang, X.: Measurements of the flow over a low-aspect ratio cylinder mounted on a ground plate. Exp. Fluids 39, 10–21 (2005)CrossRefGoogle Scholar
  24. 24.
    Pierce, C.: Progress-variable approach for large-eddy simulation of turbulent combustion. Stanford University (2001). Ph.D. thesisGoogle Scholar
  25. 25.
    Popovac, M., Hanjalic, K.: Vortices and heat flux around a wall-mounted cube cooled simultaneously by a jet and a crossflow. Int. J. Heat Mass Transfer 52, 4047–4062 (2009)CrossRefGoogle Scholar
  26. 26.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1061–1068 (1983)CrossRefGoogle Scholar
  27. 27.
    Rostamy, N., Sumner, D., Bergstrom, D.J., Bugg, J.D.: Local flow field of a surface-mounted finite circular cylinder. J. Fluids Struct. 34, 105–122 (2012)CrossRefGoogle Scholar
  28. 28.
    Sanitjai, S., Goldstein, R.J.: Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat Mass Tran 47, 4795–4805 (2004)CrossRefGoogle Scholar
  29. 29.
    Sanitjai, S., Goldstein, R.J.: Heat transfer from a circular cylinder to mixtures of water and ethylene glycol. Int. J. Heat Mass Tran. 47, 4785–4794 (2004)CrossRefGoogle Scholar
  30. 30.
    Sparrow, E.M., Stahl, T.J., Traub, P.: Heat transfer adjacent to the attached end of a cylinder in crossflow. Int. J. Heat Mass Tran. 27(2), 233–242 (1984)CrossRefGoogle Scholar
  31. 31.
    Stone, H.: Iterative solution of implicit approximations of multidimensional partial differential equations for finite difference Methods. SIAM J. Numer. Anal. 5, 530–558 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Sumner, D.: Flow above the free end of a surface-mounted finite-height circular cylinder: a review. J. Fluids Struct. 43, 41–63 (2013)CrossRefGoogle Scholar
  33. 33.
    Tsutsui, T., Igarashi, T., Nakamura, H.: Fluid flow and heat transfer around a cylindrical protuberance mounted on a flat plate boundary layer. JSME Ser. B 43(2), 279–287 (2000)CrossRefGoogle Scholar
  34. 34.
    Tsutsui, T., Kawahara, M.: Heat transfer around a cylindrical protuberance mounted in a plane turbulent boundary layer. J. Heat Tran. 128, 153–161 (2006)CrossRefGoogle Scholar
  35. 35.
    Tutar, M., Akkoca, A.: Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin-and-tube heat exchangers. Num. Heat Tran. A 46, 301–321 (2004)CrossRefGoogle Scholar
  36. 36.
    Zhu, J.: Low diffusive and oscillation–free convection scheme. Comm. Appl. Num. Meth. 7, 225–232 (1991)CrossRefzbMATHGoogle Scholar
  37. 37.
    Zukauskas, A.A.: Heat transfer from tubes in cross-flow. Adv. Heat Tran. 8, 93–160 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Manuel García-Villalba
    • 1
    Email author
  • Guillermo Palau-Salvador
    • 2
  • Wolfgang Rodi
    • 3
    • 4
  1. 1.Bioingeniería e Ing. AeroespacialUniv. Carlos III de MadridLeganésSpain
  2. 2.Departament d’Enginyeria Rural i Agroalimentària,Universitat Politècnica de ValènciaValenciaSpain
  3. 3.Inst. HydromechanicsKarlsruhe Inst. of TechnologyKarlsruheGermany
  4. 4.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations