Flow, Turbulence and Combustion

, Volume 93, Issue 1, pp 171–187 | Cite as

Forced Convection Heat Transfer from a Finite-Height Cylinder

  • Manuel García-Villalba
  • Guillermo Palau-Salvador
  • Wolfgang Rodi
Original Paper

Abstract

This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.

Keywords

Large-eddy simulation Heat transfer Forced convection Finite-height cylinder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ames, F., Dvorak, L.: Turbulent transport in pin fin arrays: experimental data and predictions. J. Turbomach. 128(1), 71–81 (2006)CrossRefGoogle Scholar
  2. 2.
    Armstrong, J., Winstanley, D.: A review of staggered array pin fin heat transfer for turbine cooling applications. J. Turbomach. 110, 94 (1988)CrossRefGoogle Scholar
  3. 3.
    Breuer, M., Rodi, W.: Large eddy simulation of complex turbulent flows of practical interest. In: Hirschel, E. (ed.) Flow Simulation with High Performance Computers II, Notes on Numerical Fluid Mechanics, Vol. 52, pp 258–274. Vieweg, Braunschweig (1996)CrossRefGoogle Scholar
  4. 4.
    Chen, S., Sanitjai, S., Ghosh, K., Goldstein, R.: Three-dimensional vortex flow near the endwall of a short cylinder in crossflow: uniform-diameter circular cylinder. Appl. Therm. Eng. 49, 73–78 (2012)CrossRefGoogle Scholar
  5. 5.
    Delibra, G., Hanjalic, K., Borello, D., Rispoli, F.: Vortex structures and heat transfer in a wall-bounded pin matrix: LES with a RANS wall-treatment. Int. J. Heat Fluid Flow 31(5), 740–753 (2010)CrossRefGoogle Scholar
  6. 6.
    Denev, J.A., Fröhlich, J., Bockhorn, H.: Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys. Fluids 21, 015101 (2009)Google Scholar
  7. 7.
    Donnert, G.D., Kappler, M., Rodi, W.: Measurement of tracer concentration in the flow around finite-height cylinders. J. Turbul. 8, 33 (2007)CrossRefGoogle Scholar
  8. 8.
    Frederich, O., Thiele, F.: Turbulent flow dynamics caused by a truncated cylinder. Int. J. Heat Fluid Flow 32(3), 546–557 (2011)CrossRefGoogle Scholar
  9. 9.
    Fröhlich, J., García-Villalba, M., Rodi, W.: Scalar mixing and large–scale coherent structures in a turbulent swirling jet. Flow Turbul. Combust. 80, 47–59 (2008)CrossRefMATHGoogle Scholar
  10. 10.
    Fröhlich, J., Rodi, W.: LES of the flow around a cylinder of finite height. Int. J. Heat Fluid Flow 25, 537–548 (2004)CrossRefGoogle Scholar
  11. 11.
    García-Villalba, M., Fröhlich, J.: LES of a free annular swirling jet–Dependence of coherent structures on a pilot jet and the level of swirl. Int. J. Heat Fluid Flow 27(5), 911–923 (2006)CrossRefGoogle Scholar
  12. 12.
    García-Villalba, M., Li, N., Rodi, W., Leschziner, M.A.: Large eddy simulation of separated flow over a three-dimensional axisymmetric hill. J. Fluid Mech. 627, 55–96 (2009)CrossRefMATHGoogle Scholar
  13. 13.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760–1765 (1991)CrossRefMATHGoogle Scholar
  14. 14.
    Hinckel, J.N., Nagamatsu, H.T.: Heat transfer in the stagnation region of the junction of a circular cylinder perpendicular to a flat plate. Int. J. Heat Mass Tran. 29(7), 999–1005 (1986)CrossRefGoogle Scholar
  15. 15.
    Hinterberger, C.: Dreidimensionale und tiefengemittelte Large-eddy-simulation von flachwasserströmungen. University of Karlsruhe (2004). Ph.D. thesisGoogle Scholar
  16. 16.
    Hölscher, N., Niemann, H.J.: Some aspects about the flow around a surface-mounted circular cylinder in a turbulent shear flow. In: Proceedings of 6th Symp. Int. Turbulent Shear Flows, ToulouseGoogle Scholar
  17. 17.
    Krajnovic, S.: Flow around a tall finite cylinder explored by large eddy simulation. J. Fluid Mech. 676, 294–317 (2011)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Lilly, D.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633–635 (1992)CrossRefGoogle Scholar
  19. 19.
    Morgan, V.T.: The overall convective heat transfer from smooth circular cylinders. Adv. Heat Tran. 11, 199–264 (1975)CrossRefGoogle Scholar
  20. 20.
    Ničeno, B., Dronkers, A., Hanjalić, K.: Turbulent heat transfer from a multi-layered wall-mounted cube matrix: a large eddy simulation. Int. J. Heat Fluid Flow 23(2), 173–185 (2002)CrossRefGoogle Scholar
  21. 21.
    Palau-Salvador, G., García-Villalba, M., Rodi, W.: Scalar transport from point sources in the flow around a finite-height cylinder. Environ. Fluid Mech. 11, 611–625 (2011)CrossRefGoogle Scholar
  22. 22.
    Palau-Salvador, G., Stoesser, T., Fröhlich, J., Kappler, M., Rodi, W.: Large-eddy simulations and experiments of flow around finite-height cylinders. Flow Turbul. Combust. 84, 239–275 (2010)CrossRefMATHGoogle Scholar
  23. 23.
    Pattenden, R., Turnock, S., Zhang, X.: Measurements of the flow over a low-aspect ratio cylinder mounted on a ground plate. Exp. Fluids 39, 10–21 (2005)CrossRefGoogle Scholar
  24. 24.
    Pierce, C.: Progress-variable approach for large-eddy simulation of turbulent combustion. Stanford University (2001). Ph.D. thesisGoogle Scholar
  25. 25.
    Popovac, M., Hanjalic, K.: Vortices and heat flux around a wall-mounted cube cooled simultaneously by a jet and a crossflow. Int. J. Heat Mass Transfer 52, 4047–4062 (2009)CrossRefGoogle Scholar
  26. 26.
    Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1061–1068 (1983)CrossRefGoogle Scholar
  27. 27.
    Rostamy, N., Sumner, D., Bergstrom, D.J., Bugg, J.D.: Local flow field of a surface-mounted finite circular cylinder. J. Fluids Struct. 34, 105–122 (2012)CrossRefGoogle Scholar
  28. 28.
    Sanitjai, S., Goldstein, R.J.: Forced convection heat transfer from a circular cylinder in crossflow to air and liquids. Int. J. Heat Mass Tran 47, 4795–4805 (2004)CrossRefGoogle Scholar
  29. 29.
    Sanitjai, S., Goldstein, R.J.: Heat transfer from a circular cylinder to mixtures of water and ethylene glycol. Int. J. Heat Mass Tran. 47, 4785–4794 (2004)CrossRefGoogle Scholar
  30. 30.
    Sparrow, E.M., Stahl, T.J., Traub, P.: Heat transfer adjacent to the attached end of a cylinder in crossflow. Int. J. Heat Mass Tran. 27(2), 233–242 (1984)CrossRefGoogle Scholar
  31. 31.
    Stone, H.: Iterative solution of implicit approximations of multidimensional partial differential equations for finite difference Methods. SIAM J. Numer. Anal. 5, 530–558 (1968)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Sumner, D.: Flow above the free end of a surface-mounted finite-height circular cylinder: a review. J. Fluids Struct. 43, 41–63 (2013)CrossRefGoogle Scholar
  33. 33.
    Tsutsui, T., Igarashi, T., Nakamura, H.: Fluid flow and heat transfer around a cylindrical protuberance mounted on a flat plate boundary layer. JSME Ser. B 43(2), 279–287 (2000)CrossRefGoogle Scholar
  34. 34.
    Tsutsui, T., Kawahara, M.: Heat transfer around a cylindrical protuberance mounted in a plane turbulent boundary layer. J. Heat Tran. 128, 153–161 (2006)CrossRefGoogle Scholar
  35. 35.
    Tutar, M., Akkoca, A.: Numerical analysis of fluid flow and heat transfer characteristics in three-dimensional plate fin-and-tube heat exchangers. Num. Heat Tran. A 46, 301–321 (2004)CrossRefGoogle Scholar
  36. 36.
    Zhu, J.: Low diffusive and oscillation–free convection scheme. Comm. Appl. Num. Meth. 7, 225–232 (1991)CrossRefMATHGoogle Scholar
  37. 37.
    Zukauskas, A.A.: Heat transfer from tubes in cross-flow. Adv. Heat Tran. 8, 93–160 (1972)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Manuel García-Villalba
    • 1
  • Guillermo Palau-Salvador
    • 2
  • Wolfgang Rodi
    • 3
    • 4
  1. 1.Bioingeniería e Ing. AeroespacialUniv. Carlos III de MadridLeganésSpain
  2. 2.Departament d’Enginyeria Rural i Agroalimentària,Universitat Politècnica de ValènciaValenciaSpain
  3. 3.Inst. HydromechanicsKarlsruhe Inst. of TechnologyKarlsruheGermany
  4. 4.King Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations