Advertisement

Flow, Turbulence and Combustion

, Volume 92, Issue 4, pp 885–902 | Cite as

An Optimization Approach to Kinetic Model Reduction for Combustion Chemistry

  • Dirk Lebiedz
  • Jochen Siehr
Article

Abstract

Model reduction methods are relevant when the computation time of a full convection–diffusion–reaction simulation based on detailed chemical reaction mechanisms is too large. In this article, we consider a model reduction approach based on optimization of trajectories and its applicability to realistic combustion models. As many model reduction methods, it identifies points on a slow invariant manifold based on time scale separation in the dynamics of the reaction system. The numerical approximation of points on the manifold is achieved by solving a semi-infinite optimization problem, where the dynamics enter the problem as constraints. The proof of existence of a solution for an arbitrarily chosen dimension of the reduced model (slow manifold) is extended to the case of realistic combustion models including thermochemistry by considering the properties of proper maps. The model reduction approach is finally applied to two models based on realistic reaction mechanisms: ozone decomposition as a small test case and syngas combustion as a test case including all features of a detailed combustion mechanism.

Keywords

Model reduction Slow invariant manifold Chemical kinetics Nonlinear optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amestoy, P.R., Duff, I.S., Koster, J., L’Excellent, J.Y.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix. Anal. A 23(1), 15–41 (2001). doi: 10.1137/S0895479899358194 CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ascher, U., Petzold, L.: Computer methods for ordinary differential equations and differential-algebraic equations. SIAM, Philadelphia (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bell, B.M.: Automatic differentiation software cppad. http://www.coin-or.org/CppAD/ (2010)
  4. 4.
    Bell, B.M., Burke, J.V.: Algorithmic differentiation of implicit functions and optimal values. In: Bischof, C.H., Bücker, H.M., Hovland, P.D., Naumann, U., Utke, J. (eds.) Advances in Automatic Differentiation, pp. 67–77. Springer (2008)Google Scholar
  5. 5.
    Burcat, A., Ruscic, B.: Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables. Tech. rep., Argonne National Laboratory (2005)Google Scholar
  6. 6.
    Bykov, V., Maas, U.: Problem adapted reduced models based on reaction–diffusion manifolds (REDIMs). Proc. Combust. Inst. 32(1), 561–568 (2009). doi: 10.1016/j.proci.2008.06.186 CrossRefGoogle Scholar
  7. 7.
    Bykov, V., Maas, U.: Reaction-diffusion manifolds and global quasi-linearization: Two complementary methods for mechanism reduction. Open Thermodyn. J. 4, 92–100 (2010). doi: 10.2174/1874396X01004010092 CrossRefGoogle Scholar
  8. 8.
    Bykov, V., Neagos, A., Maas, U.: On transient behavior of non-premixed counter-flow diffusion flames within the REDIM based model reduction concept. Proc. Combust. Inst. 34(1), 197–203 (2013). doi: 10.1016/j.proci.2012.06.073 CrossRefGoogle Scholar
  9. 9.
    Chiavazzo, E.: Approximation of slow and fast dynamics in multiscale dynamical systems by the linearized relaxation redistribution method. J. Comput. Phys. 231(4), 1751–1765 (2012). doi: 10.1016/j.jcp.2011.11.007 CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Curtiss, C.F., Hirschfelder, J.O.: Integration of stiff equations. Proc. Natl. Acad. Sci. USA 38, 235–243 (1952)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Davis, M.J., Skodje, R.T.: Geometric investigation of low-dimensional manifolds in systems approaching equilibrium. J. Chem. Phys. 111, 859–874 (1999). doi: 10.1063/1.479372 CrossRefGoogle Scholar
  12. 12.
    Dedner, A., Fein, M., Klöfkorn, R., Lebiedz, D.: On the use of chemistry-based slow invariant manifolds in DG methods for reactive flows. Prepr. Serv. Ulm University 10, 1–30 (2013) http://www.uni-ulm.de/mawi/fakultaet/forschung/preprint-server.html Google Scholar
  13. 13.
    Delhaye, S., Somers, L.M.T., van Oijen, J.A., de Goey, L.P.H.: Incorporating unsteady flow-effects in flamelet-generated manifolds. Combust. Flame 155(1–2), 133–144 (2008). doi: 10.1016/j.combustflame.2008.03.023 CrossRefGoogle Scholar
  14. 14.
    Forsgren, A., Gill, P.E., Wright, M.H.: Interior methods for nonlinear optimization. SIAM Rev. 44(4), 525–597 (2002). doi: 10.1137/S0036144502414942 CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Gilbert, R., Luther, K., Troe, J.: Theory of thermal unimolecular reactions in the fall-off range. II. Weak collision rate constants. Ber. Bunsenges. Phys. Chem 87, 169–177 (1983)CrossRefGoogle Scholar
  16. 16.
    Girimaji, S.S.: Reduction of large dynamical systems by minimization of evolution rate. Phys. Rev. Lett. 82(11), 2282–2285 (1999). doi: 10.1103/PhysRevLett.82.2282 CrossRefGoogle Scholar
  17. 17.
    Gorban, A.N., Karlin, I.V.: Invariant Manifolds for Physical and Chemical Kinetics, Lecture Notes in Physics, vol. 660. Springer-Verlag, Berlin (2005)Google Scholar
  18. 18.
    Goussis, D.A.: Quasi steady state and partial equilibrium approximations: their relation and their validity. Combust. Theor. Model. 16(5), 869–926 (2012). doi: 10.1080/13.647830.2012.680502 CrossRefMathSciNetGoogle Scholar
  19. 19.
    Hiremath, V., Lantz, S.R., Wang, H., Pope, S.B.: Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion. Combust. Flame 159(10), 3096–3109 (2012). doi: 10.1016/j.combustflame.2012.04.013 CrossRefGoogle Scholar
  20. 20.
    Hiremath, V., Lantz, S.R., Wang, H., Pope, S.B.: Large-scale parallel simulations of turbulent combustion using combined dimension reduction and tabulation of chemistry. Proc. Combust. Inst. 34(1), 205–215 (2013). doi: 10.1016/j.proci.2012.06.004 CrossRefGoogle Scholar
  21. 21.
    HSL: A collection of fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk (2007)
  22. 22.
    Kee, R.J., Coltrin, M.E., Glarborg, P.: Chemically Reacting Flow: Theory and Practice. Wiley-Interscience, Hoboken (2003)CrossRefGoogle Scholar
  23. 23.
    Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: NO prediction in turbulent flames using LES/FGM with additional transport equations. Proc. Combust. Inst. 33(2), 2975–2982 (2011). doi: 10.1016/j.proci.2010.07.021 CrossRefGoogle Scholar
  24. 24.
    Lam, S.: Recent Advances in the Aerospace Sciences, chap. Singular Perturbation for Stiff Equations using Numerical Methods, pp 3–20. Plenum, New York (1985)Google Scholar
  25. 25.
    Lam, S.H., Goussis, D.A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994). doi:10.1002/kin.550260408CrossRefGoogle Scholar
  26. 26.
    Lebiedz, D.: Computing minimal entropy production trajectories: An approach to model reduction in chemical kinetics. J. Chem. Phys. 120(15), 6890–6897 (2004). doi: 10.1063/1.1652428 CrossRefGoogle Scholar
  27. 27.
    Lebiedz, D.: Entropy-related extremum principles for model reduction of dynamical systems. Entropy 12(4), 706–719 (2010). doi: 10.3390/e12040706 CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Lebiedz, D., Reinhardt, V., Siehr, J.: Minimal curvature trajectories: Riemannian geometry concepts for slow manifold computation in chemical kinetics. J. Comput. Phys. 229(18), 6512–6533 (2010). doi: 10.1016/j.jcp.2010.05.008 CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Lebiedz, D., Siehr, J.: A continuation method for the efficient solution of parametric optimization problems in kinetic model reduction. SIAM J. Sci. Comput. 35(3), A1548–A1603 (2013). doi: 10.1137/120900344 Google Scholar
  30. 30.
    Lebiedz, D., Siehr, J., Unger, J.: A variational principle for computing slow invariant manifolds in dissipative dynamical systems. SIAM J. Sci. Comput. 33(2), 703–720 (2011). doi: 10.1137/100790318 CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Lee, J.M.: Introduction to Topological Manifolds, 2nd edn. No. 202 in Graduate Texts in Mathematics. Springer, New York (2011)CrossRefGoogle Scholar
  32. 32.
    Maas, U., Pope, S.B.: Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239–264 (1992). doi: 10.1016/0010-2180(92)90034-M CrossRefGoogle Scholar
  33. 33.
    Maas, U., Warnatz, J.: Simulation of thermal ignition processes in two-dimensional geometries. Z. Phys. Chem. N. F 161, 61–81 (1989). doi: 10.1524/zpch.1989.161.Part_1_2.061 CrossRefGoogle Scholar
  34. 34.
    Mengers, J.D., Powers, J.M.: One-dimensional slow invariant manifolds for fully coupled reaction and micro-scale diffusion. SIAM J. Appl. Dyn. Syst. 12(2), 560–595 (2013). doi: 10.1137/120877118 CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    Najm, H.N., Valorani, M., Goussis, D.A., Prager, J.: Analysis of methane-air edge flame structure. Combust. Theor. Model 14(2), 257–294 (2010). doi: 10.1080/13647830.2010.483021 CrossRefzbMATHGoogle Scholar
  36. 36.
    Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)Google Scholar
  37. 37.
    Powell, M.J.D.: A fast algorithm for nonlinearly constrained optimization calculations. In: Dold, A., Eckmann, B. (eds.) Numerical Analysis, Lecture Notes in Mathematics, vol. 630, pp. 144–157. Springer-Verlag, Berlin (1978)Google Scholar
  38. 38.
    Reinhardt, V., Winckler, M., Lebiedz, D.: Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches. J. Phys. Chem. A 112(8), 1712–1718 (2008). doi: 10.1021/jp0739925 CrossRefGoogle Scholar
  39. 39.
    Siehr, J.: Numerical optimization methods within a continuation strategy for the reduction of chemical combustion models. Ph.D. thesis, Heidelberg University, Heidelberg, Germany (2013). http://www.ub.uni-heidelberg.de/archiv/14946
  40. 40.
    Skanda, D.: Robust optimal experimental design for model discrimination of kinetic ODE systems. Ph.D. thesis, University of Freiburg, Freiburg im Breisgau, Germany (2012). http://www.freidok.uni-freiburg.de/volltexte/8787/
  41. 41.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C.Jr., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0. published online (1999). http://www.me.berkeley.edu/gri_mech
  42. 42.
    Troe, J.: Theory of thermal unimolecular reactions in the fall-off range. i. strong collision rate constants. Ber. Bunsenges. Phys. Chem. 87, 161–169 (1983)CrossRefGoogle Scholar
  43. 43.
    Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Program 106(1), 25–57 (2006). doi: 10.1007/s10107-004-0559-y CrossRefzbMATHMathSciNetGoogle Scholar
  44. 44.
    Warnatz, J., Maas, U., Dibble, R.W.: Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Berlin (2006)Google Scholar
  45. 45.
    Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 3rd edn. No. 2 in Texts in Applied Mathematics. Springer, New York (1996)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute for Numerical MathematicsUlm UniversityUlmGermany
  2. 2.Interdisciplinary Center for Scientific Computing (IWR)Heidelberg UniversityHeidelbergGermany

Personalised recommendations