Flow, Turbulence and Combustion

, Volume 92, Issue 3, pp 699–730 | Cite as

Testing an Improved Artificial Viscosity Advection Scheme to Minimise Wiggles in Large Eddy Simulation of Buoyant Jet in Crossflow

Article

Abstract

Obtaining accurate and wiggle free Large Eddy Simulation (LES) results of high Re configurations with obstacles is a challenge, especially when the resolution is moderate. This study focusses on LES of buoyant jet in crossflow (JICF). The zone in front of the jet is sensitive for wiggle formation because the jet acts as an obstacle. Only 10 grid cells over the diameter of the jet at outflow are used in order to be able to simulate very large mixing areas with limited CPU power. The resolution increases rapidly to 30–50 cells over the diameter of the bend over jet further downstream. This study tests an artificial viscosity advection scheme with sixth order dissipation, called AV6, which dissipates wiggles adequately with almost no dissipation on physical relevant scales. This desirable behaviour is demonstrated by a Fourier analysis of the Advection-Diffusion equation and turbulent flow simulations. AV6 is a mix of, and improvement over, the artificial viscosity scheme of Jameson et al. (1981) with fourth order dissipation, here called AV4, and a fifth order upwind scheme (UPW5) of Wicker and Skamarock (Mon Weather Rev 130:2088, 2002). AV6 is a robust, simple and easy to implement advection scheme and the total computational time of a simulation with AV6 is only a few percent more than with the second order central scheme (CDS2). Three realistic turbulent flow problems, relevant for buoyant JICF, are used to compare the performance of AV6 with CDS2, AV4 and UPW5 with each other and with experiments. Different grid resolutions and sub-grid scale models are used. The three test cases are a non-buoyant JICF, a buoyant jet in weak coflow, and a buoyant JICF. Of all tested advection schemes, AV6 produces best results and is preferred for LES of buoyant JICF.

Keywords

Buoyant jet in crossflow Flow past obstacle Large Eddy Simulation Minimise wiggles  Advection scheme Artificial viscosity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge–Kutta time-stepping schemes. In: AIAA Paper, pp. 81–1259 (1981)Google Scholar
  2. 2.
    Wicker, L., Skamarock, W.: Time-splitting methods for elastic models using forward time schemes. Mon. Weather Rev. 130, 2088 (2002)CrossRefGoogle Scholar
  3. 3.
    Margason, R.: Fifty years of jet in crossflow research. In: Proceedings of AGARD conference on Computational and Experimental Assessment of Jets in Cross Flow (1993)Google Scholar
  4. 4.
    Fan, L.: Turbulent byoyant jets into stratified or flowing ambient fluids. Tech. Rep., W.M. Keck Lab. of Hydr. and Water Resources, California Inst. of Tech. (1967). Report No. KH-R-15Google Scholar
  5. 5.
    Ayoub, G.: Test results on buoyant jets injected horizontally in a cross flowing stream. Water Air Soil Pollut. 2, 409 (1973)CrossRefGoogle Scholar
  6. 6.
    Chu, V., Goldberg, M.: Buoyant forced plumes in crossflow. J. Hydraul. Div. 100(9), 1203 (1974). ASCEGoogle Scholar
  7. 7.
    Crabb, D., Durao, D., Whitelaw, J.: A round jet normal to a crossflow. J. Fluids Eng. 103, 142 (1981)CrossRefGoogle Scholar
  8. 8.
    Andreopoulos, J., Rodi, W.: Experimental investigation of jets in a crossflow. J. Fluid Mech. 138, 93 (1984)CrossRefGoogle Scholar
  9. 9.
    Fric, T., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1 (1994)CrossRefGoogle Scholar
  10. 10.
    Sykes, R., Lewellen, W., Parker, S.: On the vorticity dynamics of a turbulent jet in a crossflow. J. Fluid Mech. 168, 393 (1986)CrossRefMATHGoogle Scholar
  11. 11.
    Demuren, A.: Characteristics of three-dimensional turbulent jets in crossflow. Int. J. Eng. Sci. 31(6), 899 (1993). doi:10.1016/0020-7225(93)90102-Z CrossRefGoogle Scholar
  12. 12.
    Muppidi, S., Mahesh, K.: Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81 (2005)CrossRefMATHGoogle Scholar
  13. 13.
    Jones, W., Wille, M.: Large Eddy Simulation of a plane jet in a cross-flow. Int. J. Heat Fluid Flow 17, 296 (1996)CrossRefGoogle Scholar
  14. 14.
    Schlüter, J., Schönfeld, T.: Les of jets in cross flow and its application to a gas turbine burner. Flow Turbul. Combust. 65, 177 (2000)CrossRefMATHGoogle Scholar
  15. 15.
    Wegner, B., Huai, Y., Sadiki, A.: Comparitive study of turbulent mixing in jet in cross-flow configurations using les. Int. J. Heat Fluid Flow 25, 767 (2004)CrossRefGoogle Scholar
  16. 16.
    Majander, P.: Large Eddy Simulation of a round jet in a cross-flow. Ph.D. thesis, Helsinki University of Technology (2006)Google Scholar
  17. 17.
    Wang, P., Frohlich, J., Michelassi, V., Rodi, W.: Large-eddy simulations of variable-density turbulent axisymmetric jets. Int. J. Heat Fluid Flow 29, 654 (2008)CrossRefGoogle Scholar
  18. 18.
    Ziefle, J., Kleiser, L.: Large-eddy simulation of a round jet in crossflow. AIAA J. 47(5), 1158 (2009). doi:10.2514/1.38465 CrossRefGoogle Scholar
  19. 19.
    Yuan, L., Street, R.: Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10(9), 2323 (1998)CrossRefGoogle Scholar
  20. 20.
    Devenish, B., Rooney, G., Webster, H., Thomson, D.: The entrainment rate for buoyant plumes in a crossflow. Bound.-Layer Meteorol. 134, 411 (2010)CrossRefGoogle Scholar
  21. 21.
    Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163 (2011)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Karaca, M., Lardjane, N., Fedioun, I.: Implicit Large Eddy Simulation of high-speed non-reacting and reacting air/h2 jets with a 5th order weno scheme. Comput. Fluids 62, 25 (2012). doi:10.1016/j.compfluid.2012.03.013. http://www.sciencedirect.com/science/article/pii/S0045793012001004 CrossRefMathSciNetGoogle Scholar
  23. 23.
    Park, N., Yoo, J.Y., Choi, H.: Discretization errors in Large Eddy Simulation: on the suitability of centered and upwind-biased compact difference schemes. J. Comput. Phys. 198(2), 580 (2004). doi:10.1016/j.jcp.2004.01.017. http://www.sciencedirect.com/science/article/pii/S0021999104000531 CrossRefMATHGoogle Scholar
  24. 24.
    Sagaut, P.: Large Eddy Simulation for incompressible flows. In: Scientific Computation, Springer (1999)Google Scholar
  25. 25.
    Kogaki, T., Kobayashi, T., Taniguchi, N.: Large Eddy Simulation of flow around a rectangular cylinder. Fluid Dyn. Res. 20, 11 (1997)CrossRefGoogle Scholar
  26. 26.
    Ducros, F., Laporte, F., Soulres, T., Guinot, V., Moinat, P., Caruelle, B.: High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161(1), 114 (2000). doi:10.1006/jcph.2000.6492. http://www.sciencedirect.com/science/article/pii/S0021999100964921 CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kravchenko, A., Moin, P.: On the effect of numerical errors in Large Eddy Simulations of turbulent flows. J. Comput. Phys. 131(2), 310 (1997). doi:10.1006/jcph.1996.5597. http://www.sciencedirect.com/science/article/pii/S0021999196955977 CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Morinishi, Y., Lund, T., Vasilyev, O., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143(1), 90 (1998). doi:10.1006/jcph.1998.5962. http://www.sciencedirect.com/science/article/pii/S0021999198959629 CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Morinishi, Y.: Skew-symmetric form of convective terms and fully conservative finite difference schemes for variable density low-mach number flows. J. Comput. Phys. 229(2), 276 (2010). doi:10.1016/j.jcp.2009.09.021. http://www.sciencedirect.com/science/article/pii/S0021999109005130 CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Verstappen, R., Veldman, A.: Symmetry-preserving discretization of turbulent flow. J. Comput. Phys. 187(1), 343 (2003). doi:10.1016/S0021-9991(03)00126-8. http://www.sciencedirect.com/science/article/pii/S0021999103001268 CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Lele, S.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103(1), 16 (1992)CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Knikker, R.: Study of a staggered fourth-order compact scheme for unsteady incompressible viscous flow. Int. J. Numer. Methods Fluids 59(10), 1063 (2009)CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Hokpunna, A., Manhart, M.: Compact fourth-order finite volume method for numerical solutions of navier-stokes equations on staggered grids. J. Comput. Phys. 229(20), 7545 (2010). doi:10.1016/j.jcp.2010.05.042 CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Boersma, B.J.: A 6th order staggered compact finite difference method for the incompressible navierstokes and scalar transport equations. J. Comput. Phys. 230(12), 4940 (2011). doi:10.1016/j.jcp.2011.03.014. http://www.sciencedirect.com/science/article/pii/S0021999111001574 CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Gaitonde, D., Visbal, M.R.: High order schemes for navier stokes equations: algorithm and implementation into fdl3di. Tech. Rep., Air Vehicle Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433-7913 (1998)Google Scholar
  36. 36.
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulations. Comput. Fluids 31(4–7), 695 (2002). doi:10.1016/S0045-7930(01)00073-1. http://www.sciencedirect.com/science/article/pii/S0045793001000731 CrossRefMATHGoogle Scholar
  37. 37.
    Kawai, S., Lele, S.: Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48(9), 2063 (2010)CrossRefGoogle Scholar
  38. 38.
    Amielh, M., Djeridane, T., Anselmet, F., Fulachier, L.: Velocity near-field region of variable density turbulent jets. Int. J. Heat Mass Transfer 39(10), 2149 (1996)CrossRefGoogle Scholar
  39. 39.
    Pourquié, M.J.B.M.: Large Eddy Simulation of a turbulent jet. Ph.D. thesis, Delft University of Technology (1994)Google Scholar
  40. 40.
    Najm, H., Wyckoff, P., Knio, O.: A semi-implicit numerical scheme for reacting flow. J. Comput. Phys. 143, 381 (1998)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Fadlun, E., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161(1), 35 (2000). doi:10.1006/jcph.2000.6484. http://www.sciencedirect.com/science/article/pii/S0021999100964842 CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Menon, S., Rizk, M.: Large-eddy simulations of forced three dimensional impinging jets. Int. J. Comput. Fluid Dyn. 7, 275 (1996)CrossRefMATHGoogle Scholar
  43. 43.
    Chen, Y., Li, C., Zhang, C.: Numerical modeling of a round jet discharged in random waves. Ocean Eng. 35, 77 (2007)CrossRefGoogle Scholar
  44. 44.
    Worthy, J.: Large Eddy Simulation of buoyant plumes. Ph.D. thesis, Cranfield University (2003)Google Scholar
  45. 45.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer (2002)Google Scholar
  46. 46.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183 (1999)CrossRefMATHGoogle Scholar
  47. 47.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for Large Eddy Simulations. Phys. Fluids 23(8), 085106 (2011). doi:10.1063/1.3623274. http://link.aip.org/link/?PHF/23/085106/1 CrossRefGoogle Scholar
  48. 48.
    Kaltenbach, H., Choi, H.: Large Eddy Simulation of flow around an airfoil on a structured mesh. In: Center for Turbulence Research, Annual Research Briefs, pp. 51–60 (1995)Google Scholar
  49. 49.
    Kawai, S., Shankar, S.K., Lele, S.K.: Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229(5), 1739 (2010). doi:10.1016/j.jcp.2009.11.005. http://www.sciencedirect.com/science/article/pii/S0021999109006160 CrossRefMATHMathSciNetGoogle Scholar
  50. 50.
    Dantinne, G., Jeanmart, H., Winckelmans, G.S., Legat, V., Carati, D.: Hyperviscosity and vorticity-based models for subgrid scale modeling. Appl. Sci. Res. 59(4), 409–420 (1997). doi:10.1023/A:1001179014517 CrossRefGoogle Scholar
  51. 51.
    Hughes, T.J.R., Mazzei, L., Oberai, A.A., Wray, A.A.: The multiscale formulation of Large Eddy Simulation: decay of homogeneous isotropic turbulence. Phys. Fluids 13(2), 505 (2001). doi:10.1063/1.1332391. http://link.aip.org/link/?PHF/13/505/1 CrossRefGoogle Scholar
  52. 52.
    Bricteux, L., Duponcheel, M., Winckelmans, G.: A multiscale subgrid model for both free vortex flows and wall-bounded flows. Phys. Fluids 21(10), 105102 (2009). doi:10.1063/1.3241991. http://link.aip.org/link/?PHF/21/105102/1 CrossRefGoogle Scholar
  53. 53.
    Franke, J., Frank, W.: Large Eddy Simulation of the flow past a circular cylinder at red=3900. J. Wind Eng. Ind. Aerodyn. 90(10), 1191 (2002). doi:10.1016/S0167-6105(02)00232-5. http://www.sciencedirect.com/science/article/pii/S0167610502002325 CrossRefGoogle Scholar
  54. 54.
    Krajnovic, S., Sarmast, S., Basara, B.: Numerical investigation of the flow around a simplified wheel in a wheelhouse. J. Fluids Eng. 133(11), 111001 (2011). doi:10.1115/1.4004992. http://link.aip.org/link/?JFG/133/111001/1 CrossRefGoogle Scholar
  55. 55.
    Andreopoulos, J.: Heat transfer measurements in a heated jet-pipe flow issuing into a cold cross stream. Phys. Fluids 26(11), 3201 (1983)CrossRefGoogle Scholar
  56. 56.
    Yuan, L., Street, R., Ferziger, J.: Large Eddy Simulation of a round jet in crossflow. J. Fluid Mech. 379, 71 (1999)CrossRefMATHGoogle Scholar
  57. 57.
    Balen, W.V.: Curved open-channel flows - a numerical study. Ph.D. thesis, Delft University of Technology (2010)Google Scholar
  58. 58.
    Djeridane, T., Amielh, M., Anselmet, F., Fulachier, L.: Velocity turbulence properties in the near-field region of axisymmetric variable density jets. Phys. Fluids 8(6), 1614 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Dredging Engineering, Faculty Citg and Faculty 3mEDelft University of TechnologyDelftThe Netherlands

Personalised recommendations