Flow, Turbulence and Combustion

, Volume 92, Issue 1–2, pp 563–577 | Cite as

Unsteady Laminar to Turbulent Flow in a Spacer-Filled Channel

  • S. M. Mojab
  • A. Pollard
  • J. G. Pharoah
  • S. B. Beale
  • E. S. Hanff
Article

Abstract

A combined numerical and experimental investigation has been carried out to study the flow behaviour in a spacer-filled channel, representative of those used in spiral-wound membrane modules. Direct numerical simulation and particle image velocimetry were used to investigate the fluid flow characteristics inside a 2 × 2 cell at Reynolds numbers that range between 100 and 1000. It was found that the flow in this geometry moves parallel to and also rotates between the spacer filaments and that the rate of rotation increases with Reynolds number. The flow mechanisms, transition process and onset of turbulence in a spacer-filled channel are investigated including the use of the velocity spectra at different Reynolds numbers. It is found that the flow is steady for Re < 200 and oscillatory at Re ∼ 250 and increasingly unsteady with further increases in Re before the onset of turbulent flow at Re ∼ 1000.

Keywords

Membrane Flow spacer Laminar/turbulent flow Transition Free stream tubulence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beale, S.B., Pharoah, J.G., Kumar, A.: Numerical study of laminar flow and mass transfer for in-line spacer-filled channels. J. Heat Transf. 135(1), 011004–1/8 (2013). doi: 10.1115/1.4007651 Google Scholar
  2. 2.
    Da Costa, A.R., Fane, A., Wiley, D.: Spacer characterization and pressure drop modelling in spacer-filled channels for ultrafiltration. J. Membr. Sci. 87(1–2), 79–98 (1994)CrossRefGoogle Scholar
  3. 3.
    Kang, I.S., Chang, H.N.: The effect of turbulence promoters on mass transfer—numerical analysis and flow visualization. Int. J. Heat Mass Transfer 25(8), 1167–1181 (1982)CrossRefGoogle Scholar
  4. 4.
    Gimmelshtein, M., Semiat, R.: Investigation of flow next to membrane walls. J. Membr. Sci. 264, 137–150 (2005)CrossRefGoogle Scholar
  5. 5.
    Santos, J., Geraldes, V., Velizarov, S., Crespo, J.: Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). J. Membr. Sci. 305, 103–117 (2007)CrossRefGoogle Scholar
  6. 6.
    Geraldes, V., Semiao, V., de Pinhoa, M.: Flow management in nanofiltration spiral wound modules with ladder-type spacers. J. Membr. Sci. 203, 87–102 (2002)CrossRefGoogle Scholar
  7. 7.
    Cao, Z., Wiley, D.E., Fane, A.G.: CFD simulations of net-type turbulence promoters in a narrow channel. J. Membr. Sci. 185, 157–176 (2001)CrossRefGoogle Scholar
  8. 8.
    Schwinge, J., Wiley, D.E., Fletcher, D.F.: Simulation of the flow around spacer filaments between narrow channel walls. 1. Hydrodynamics. Ind. Eng. Chem. Res. 41, 2977–2987 (2002). doi: 10.1021/ie010588y CrossRefGoogle Scholar
  9. 9.
    Karode, S.K., Kumar, A.: Flow visualization through spacer filled channels by computational fluid dynamics. I: Pressure drop and shear rate calculations for flat sheet geometry. J. Membr. Sci. 193, 69–84 (2001)CrossRefGoogle Scholar
  10. 10.
    Li, F., Meindersma, W., de Haan, A.B., Reith, T.: Optimization of commercial net spacers in spiral wound membrane modules. J. Membr. Sci. 208, 289–302 (2002)CrossRefGoogle Scholar
  11. 11.
    Hart, D.P.: The elimination of correlation errors in PIV processing. In: 9th International Symposium on Applications of Laser Techniques to Fluid Mechanics. Lisbon, Portugal (1998)Google Scholar
  12. 12.
    Scarano, F., Riethmuller, M.L.: Iterative multigrid approach in PIV image processing with discrete window offset. Exp. Fluids 26, 513–523 (1999)CrossRefGoogle Scholar
  13. 13.
    Li, Y.L., Tung, K.L.: CFD simulation of fluid flow through spacer-filled membrane module: selecting suitable cell types for periodic boundary conditions. Desalination 233, 351–358 (2008)CrossRefGoogle Scholar
  14. 14.
    Roache, P.: Perspective: a method for uniform reporting of grid refinement studies. ASME J. Fluids Eng. 116, 405–413 (1994)CrossRefGoogle Scholar
  15. 15.
    Patankar, S.V., Liu, C.H., Sparrow, E.M.: Fully Developed Flow and Heat Transfer in Ducts Having Streamwise-Periodic Variations of Cross-Sectional Area. ASME J. Heat Transf. 99, 180–186 (1977)CrossRefGoogle Scholar
  16. 16.
    Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics, Chapter 9, 3rd edn. Springer Verlag, Berlin (2002)CrossRefGoogle Scholar

Copyright information

© Her Majesty the Queen in Right of Canada as represented by: NRC Canada 2013

Authors and Affiliations

  • S. M. Mojab
    • 1
  • A. Pollard
    • 1
  • J. G. Pharoah
    • 1
  • S. B. Beale
    • 1
    • 2
    • 3
  • E. S. Hanff
    • 2
  1. 1.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada
  2. 2.National Research Council of CanadaOttawaCanada
  3. 3.Forschungscentrum Juelich GmbHJuelichGermany

Personalised recommendations