Flow, Turbulence and Combustion

, Volume 92, Issue 1–2, pp 27–40 | Cite as

Statistics of Particle Accumulation in Spatially Developing Turbulent Boundary Layers

  • G. Sardina
  • F. Picano
  • P. Schlatter
  • L. Brandt
  • C. M. Casciola


We present the results of a Direct Numerical Simulation of a particle-laden spatially developing turbulent boundary layer up to Re θ  = 2500. Two main features differentiate the behavior of inertial particles in a zero-pressure-gradient turbulent boundary layer from the more commonly studied case of a parallel channel flow. The first is the variation along the streamwise direction of the local dimensionless parameters defining the fluid-particle interactions. The second is the coexistence of an irrotational free-stream and a near-wall rotational turbulent flow. As concerns the first issue, an inner and an outer Stokes number can be defined using inner and outer flow units. The inner Stokes number governs the near-wall behavior similarly to the case of channel flow. To understand the effect of a laminar-turbulent interface, we examine the behavior of particles initially released in the free stream and show that they present a distinct behavior with respect to those directly injected inside the boundary layer. A region of minimum concentration occurs inside the turbulent boundary layer at about one displacement thickness from the wall. Its formation is due to the competition between two transport mechanisms: a relatively slow turbulent diffusion towards the buffer layer and a fast turbophoretic drift towards the wall.


Inertial particles Turbulent boundary layers Wall flows Turbophoresis DNS 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balachandar, S., Eaton, J.K.: Turbulent dispersed multiphase flow. Ann. Rev. Fluid Mech. 42, 447–464 (2010)CrossRefGoogle Scholar
  2. 2.
    Brandt, L., Schlatter, P., Henningson, D.: Transition in boundary layers subject to free-stream turbulence. J. Fluid Mech. 517, 167–198 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Caporaloni, M., Tampieri, F., Trombetti, F., Vittori, O.: Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32(3), 565–568 (1975)CrossRefGoogle Scholar
  4. 4.
    Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: Simson: a pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07, KTH Mechanics (2007)Google Scholar
  5. 5.
    Corrsin, S., Kistler, A.: Free-stream boundaries of turbulent flows. Tech. rep., NACA (1955)Google Scholar
  6. 6.
    Gerashchenko, S., Good, G., Warhaft, Z.: Entrainment and mixing of water droplets across a shearless turbulent interface with and without gravitational effects. J. Fluid Mech. 668, 293–303 (2011)CrossRefMATHGoogle Scholar
  7. 7.
    Ireland, P.J., Collins, L.R.: Direct numerical simulation of inertial particle entrainment in a shearless mixing layer. J. Fluid Mech. 704, 301–332 (2012)CrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Marchioli, C., Soldati, A., Kuerten, J., Arcen, B., Taniere, A., Goldensoph, G., Squires, K., Cargnelutti, M., Portela, L.: Statistics of particle dispersion in direct numerical simulations of wall-bounded turbulence: results of an international collaborative benchmark test. Int. J. Multiphase Flow 34(9), 879–893 (2008)CrossRefGoogle Scholar
  9. 9.
    Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883 (1983)CrossRefMATHGoogle Scholar
  10. 10.
    Nordström, J., Nordin, N., Henningson, D.: The fringe region technique and the fourier method used in the direct numerical simulation of spatially evolving viscous flows. SIAM J. Sci. Comput. 20(4), 1365–1393 (1999)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Picano, F., Sardina, G., Casciola, C.: Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21, 093,305 (2009)CrossRefGoogle Scholar
  12. 12.
    Picano, F., Sardina, G., Gualtieri, P., Casciola, C.: Anomalous memory effects on transport of inertial particles in turbulent jets. Phys. Fluids 22, 051,705 (2010)CrossRefGoogle Scholar
  13. 13.
    Pope, S.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)CrossRefMATHGoogle Scholar
  14. 14.
    Portela, L., Cota, P., Oliemans, R.: Numerical study of the near-wall behaviour of particles in turbulent pipe flows. Powder Technol. 125(2), 149–157 (2002)CrossRefGoogle Scholar
  15. 15.
    Reeks, M.: The transport of discrete particles in inhomogeneous turbulence. J. Aerosol Sci. 14(6), 729–739 (1983)CrossRefGoogle Scholar
  16. 16.
    Rouson, D., Eaton, J.: On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149–169 (2001)CrossRefMATHGoogle Scholar
  17. 17.
    Sardina, G., Picano, F., Schlatter, P., Brandt, L., Casciola, C.M.: Large scale accumulation patterns of inertial particles in wall-bounded turbulent flow. Flow Turbul. Combust. 86, 519–532 (2011)CrossRefMATHGoogle Scholar
  18. 18.
    Sardina, G., Schlatter, P., Brandt, L., Picano, F., Casciola, C.: Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech. 699(1), 50–78 (2012)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Sardina, G., Schlatter, P., Picano, F., Casciola, C., Brandt, L., Henningson, D.: Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584–596 (2012)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to Re θ = 2500 studied through numerical simulation and experiments. Phys. Fluids 21, 051,702 (2009)CrossRefGoogle Scholar
  21. 21.
    Soldati, A., Marchioli, C.: Physics and modelling of turbulent particle deposition and entrainment: review of a systematic study. Int. J. Multiphase Flow 35, 827–839 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • G. Sardina
    • 1
    • 2
  • F. Picano
    • 2
    • 3
  • P. Schlatter
    • 2
    • 3
  • L. Brandt
    • 2
    • 3
  • C. M. Casciola
    • 4
  1. 1.Facoltà di Ingegneria, Architettura e Scienze MotorieUKE Università Kore di EnnaEnnaItaly
  2. 2.Linné FLOW CentreKTH MechanicsStockholmSweden
  3. 3.SeRC (Swedish e-Science Research Centre)KTH MechanicsStockholmSweden
  4. 4.Dipartimento di Ingegneria Meccanica e AerospazialeSapienza University of RomeRomeItaly

Personalised recommendations