Flow, Turbulence and Combustion

, Volume 91, Issue 4, pp 867–893 | Cite as

Heat Transfer Modeling in the Context of Large Eddy Simulation of Premixed Combustion with Tabulated Chemistry

  • Anja KetelheunEmail author
  • Guido Kuenne
  • Johannes Janicka


Tabulated chemistry models like the Flamelet Generated Manifolds method are a good approach to include detailed information on the reaction kinetics in a turbulent flame at reasonable computational costs. However, so far, not all information on e.g. heat losses are contained in these models. As those often appear in typical technical applications with enclosed flames in combustion chambers, extensions to the standard FGM approach will be presented in this paper, allowing for the representation of non-adiabatic boundaries. The enthalpy as additional control variable for the table access is introduced, such that the chemistry database becomes three-dimensional with mixture fraction, reaction progress variable and enthalpy describing the thermo-chemical state. The model presented here is first validated with a two-dimensional enclosed Bunsen flame and then applied within the Large Eddy Simulations of a turbulent premixed swirl flame with a water-cooled bluff body and a turbulent stratified flame, where additional modeling for the flame structure using artificially thickened flames was included. The results are encouraging, as the temperature decrease towards the bluff body in the swirl flame and the cooling of the pilot flame exhaust gases in the stratified configuration can be observed in both experiments and simulation.


Large eddy simulation Turbulent combustion Premixed flames Tabulated chemistry Heat transfer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butler, T., O’Rourke, P.: A numerical method for two dimensional unsteady flows. In: 16th Symp (International) on Combust, pp. 1503–1515 (1977)Google Scholar
  2. 2.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRefGoogle Scholar
  3. 3.
    Chem1D.: A one-dimensional laminar flame code, developed at Eindhoven University of Technology. Accessed 31 Jan 2012
  4. 4.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000)CrossRefGoogle Scholar
  5. 5.
    Durand, L., Polifke, W.: Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver. In: ASME Turbo Expo Conference Proceedings, pp. 869–878 (2007)Google Scholar
  6. 6.
    Fiorina, B., Baron, R., Gicquel, O., Thévenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 7, 449–470 (2003)CrossRefGoogle Scholar
  7. 7.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3, 1760–1765 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)CrossRefGoogle Scholar
  9. 9.
    Gregor, M., Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Multi-scalar measurements in a premixed swirl burner using 1D Raman/Rayleigh scattering. Proc. Combust. Inst. 32, 1739–1746 (2009)CrossRefGoogle Scholar
  10. 10.
    Hahn, F., Olbricht, C., Klewer, C., Kuenne, G., Ohnutek, R., Janicka, J.: Investigation of complex swirling flows using commercial and academic CFD programs. In: Proc. of the ISTP19 (2008)Google Scholar
  11. 11.
    Ihme, M., Pitsch, H.: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Phys. Fluids 20, 055, 110 (2008)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)CrossRefGoogle Scholar
  13. 13.
    Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. In: Proceedings of the ASME Turbo Expo 2009, Vol. 2, pp. 695–705. 54th ASME Turbo Expo 2009, Orlando, FL, 8–12 Jun 2009. doi: 10.1115/GT2009-59940
  14. 14.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)CrossRefGoogle Scholar
  15. 15.
    Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158, 1750–1767 (2011)CrossRefGoogle Scholar
  16. 16.
    Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation. Combust. Flame 159, 2669–2689 (2012)CrossRefGoogle Scholar
  17. 17.
    Legier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program 2000, Center for Turbulence Research, pp. 157–168 (2000)Google Scholar
  18. 18.
    Lehnhaeuser, T., Schaefer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)CrossRefzbMATHGoogle Scholar
  19. 19.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633–635 (1992)CrossRefGoogle Scholar
  20. 20.
    Marracino, B., Lentini, D.: Radiation modelling in non-luminous nonpremixed turbulent flames. Combust. Sci. Technol. 128, 23–48 (1997)CrossRefGoogle Scholar
  21. 21.
    van Oijen, J.A., Lammers, F.A., de Goey, L.P.H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127, 2124–2134 (2001)CrossRefGoogle Scholar
  22. 22.
    Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)CrossRefGoogle Scholar
  23. 23.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Philadelphia (2005)Google Scholar
  24. 24.
    Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust. 74, 103–127 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Flow field studies of a new series of turbulent premixed stratified flames. Combust. Flame 157, 384–396 (2010)CrossRefGoogle Scholar
  26. 26.
    Smagorinsky, J.S.: General circulation experiments with the primitive equations: I. The basic equations. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  27. 27.
    Somers, L.M.T., de Goey, L.P.H.: A numerical study of a premixed flame on a slit burner. Combust. Sci. Technol. 108, 121–132 (1995)CrossRefGoogle Scholar
  28. 28.
    Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airfoil flow simulations using a pressure based method with high order schemes. In: Fourteenth Int. Conf. on Numer. Methods in Fluid Dynamics, pp. 372–378 (1995)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anja Ketelheun
    • 1
    Email author
  • Guido Kuenne
    • 1
  • Johannes Janicka
    • 1
    • 2
  1. 1.Institute for Energy and Power Plant TechnologyTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations