Advertisement

Flow, Turbulence and Combustion

, Volume 92, Issue 1–2, pp 371–393 | Cite as

Numerical and Experimental Study of Rayleigh–Bénard–Kelvin Convection

  • S. Kenjereš
  • L. Pyrda
  • E. Fornalik-Wajs
  • J. S. Szmyd
Article

Abstract

We performed experimental and numerical studies of combined effects of thermal buoyancy and magnetization force applied on a cubical enclosure of a paramagnetic fluid heated from below and cooled from top. The temperature difference between the hot and cold wall was kept constant. After considering neutral situation (i.e. a pure natural convection case), magnetic fields of different intensity were imposed. The magnetization force produced significant changes in flow (transition from laminar to turbulent regimes), wall-heat transfer (enhancement) and turbulence (turbulence structures reorganization). The strong magnetic field and its gradients were generated by a superconducting magnet which can generate magnetic field up to 10 T and where gradients of the magnetic induction can reach up to 900 T2/m. A good agreement between experiments and numerical simulations was obtained in predicting the integral wall heat transfer over entire range of considered working parameters. Numerical simulations provided a detailed insights into changes of the local wall-heat transfer and long-term time averaged first and second moments for different strengths of the imposed magnetic induction.

Keywords

Natural convection Paramagnetic fluid Magnetization force Turbulent heat transfer 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Braithwaite, D., Beaugnon, E., Tournier, R.: Magnetically controlled convection in a paramagnetic fluid. Nature 354, 134–136 (1991)CrossRefGoogle Scholar
  2. 2.
    Series, R.W., Hurle, D.T.J.: The use of magnetic-fields in semiconductor crystal-growth. J. Cryst. Growth 113(1–2), 305–328 (1991)CrossRefGoogle Scholar
  3. 3.
    Wakayama, N.I.: Effects of strong magnetic fields on protein crystal growth. Cryst. Growth Des. 3(1), 17–24 (2003)CrossRefGoogle Scholar
  4. 4.
    Tagawa, T., Shigemitsu, R., Ozoe, H.: Magnetization force modeled and numerically solved for natural convection of air in a cubic enclosure: effect of the direction of the magnetic field. Int. J. Heat Mass Transfer 45(2), 267–277 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Akamatsu, M., Higano, M., Takahashi, Y., Ozoe, H.: Numerical computation of magnetothermal convection of water in a vertical cylindrical enclosure. Int. J. Heat Fluid Flow 26(4), 622–634 (2005)CrossRefGoogle Scholar
  6. 6.
    Lu, S. S., Wang, X., Hirano, H., Tagawa, T., Ozoe, H.: Water mist flow in a vertical bore of a superconducting magnet. J. Appl. Phys. 98(11), Art. No. 114906, 1–9 (2005)CrossRefGoogle Scholar
  7. 7.
    Fornalik, E., Filar, P., Tagawa, T., Ozoe, H., Szmyd, J.S.: Experimental study on the magnetic convection in a vertical cylinder. Exp. Thermal Fluid Sci. 29(8), 971–980 (2005)CrossRefGoogle Scholar
  8. 8.
    Fornalik, E., Filar, P., Tagawa, T., Ozoe, H., Szmyd, J.S.: Effect of a magnetic field on the convection of paramagnetic fluid in unstable and stable thermosyphon-like configurations. Int. J. Heat Mass Transfer 49(15–16), 2642–2651 (2006)CrossRefGoogle Scholar
  9. 9.
    Ujihara, A., Tagawa, T., Ozoe, H.: Average heat transfer rates measured in two different temperature ranges for magnetic convection of horizontal water layer heated from below. Int. J. Heat Mass Transfer 49(19–20), 3555–3560 (2006)CrossRefGoogle Scholar
  10. 10.
    Maki, S., Ataka, M., Tagawa, T., Ozoe, H.: Thermal convection of water filled in a tall vessel at or near the center of a solenoidal magnet. Phys. Fluids 19(8), Art. No. 087104, 1–8 (2007)CrossRefGoogle Scholar
  11. 11.
    Akamatsu, M., Higano, M., Ozoe, H.: Heat transfer control of Rayleigh–Benard natural convection of air by Kelvin force. Numer. Heat Transf. A Appl. 51(2), 159–177 (2007)CrossRefGoogle Scholar
  12. 12.
    Fornalik, E.: Flow patterns generated by a strong magnetic field. J. Theor. Appl. Mech. 45(3), 557–568 (2007)Google Scholar
  13. 13.
    Wang, Q.W., Zeng, M., Huang, Z.P., Wang, G., Ozoe, H.: Numerical investigation of natural convection in an inclined enclosure filled with porous medium under magnetic field. Int. J. Heat Mass Transfer 50(17–8), 3684–3689 (2007)CrossRefMATHGoogle Scholar
  14. 14.
    Bednarz, T., Fornalik, E., Ozoe, H., Szmyd, S.Z., Patterson, J.C., Lei, C.W.: Influence of a horizontal magnetic field on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical side walls. Int. J. Therm. Sci. 47(6), 668–679 (2008)CrossRefGoogle Scholar
  15. 15.
    Bednarz, T., Lei, C., Patterson, J.C., Ozoe, H.: Effects of a transverse, horizontal magnetic field on natural convection of a paramagnetic fluid in a cube. Int. J. Therm. Sci. 48(1), 26–33 (2009)CrossRefGoogle Scholar
  16. 16.
    Wrobel, W., Fornalik-Wajs, E., Szmyd, J.S.: Experimental and numerical analysis of thermo-magnetic convection in a vertical annular enclosure. Int. J. Heat Fluid Flow 31(6), 1019–1031 (2010)CrossRefGoogle Scholar
  17. 17.
    Kenjereš, S., Pyrda, L., Wrobel, W., Fornalik-Wajs, E., Szmyd, J.S.: Oscillatory states in thermal convection of a paramagnetic fluid in a cubical enclosure subjected to a magnetic field gradient. Phys. Rev. E 85(4), Art. No. 046312, 1–8 (2012)Google Scholar
  18. 18.
    Churchill, S.W., Ozoe, H.: Correlations for laminar free convection from a vertical plate. J. Heat Transf.—Trans. ASME 95(4), 540–541 (1973)CrossRefGoogle Scholar
  19. 19.
    Huang, J., Gray, D.D., Edwards, B.F.: Thermoconvective instability of paramagnetic fluids in a nonuniform magnetic field. Phys. Rev. E 57(5), 5564–5571 (1998)CrossRefGoogle Scholar
  20. 20.
    Qi, J., Wakayama, N.I., Yabe, A.: Magnetic control of thermal convection in electrically non-conducting or low-conducting paramagnetic fluids. Int. J. Heat Mass Transfer 44(16), 3043–3052 (2001)CrossRefMATHGoogle Scholar
  21. 21.
    Kenjereš, S., Hanjalić, K.: Numerical simulation of magnetic control of heat transfer in thermal convection. Int. J. Heat Fluid Flow 25(3), 559–568 (2004)CrossRefGoogle Scholar
  22. 22.
    Kenjereš, S.: Numerical analysis of blood flow in realistic arteries subjected to strong non-uniform magnetic fields. Int. J. Heat FLuid Flow 29(3), 752–764 (2008)CrossRefGoogle Scholar
  23. 23.
    Kenjereš, S.: Electromagnetic enhancement of turbulent heat transfer. Phys. Rev. E 78(6), Art. No. 066309, 1–5 (2008)Google Scholar
  24. 24.
    Kenjereš, S.: Large eddy simulations of targeted electromagnetic control of buoyancy-driven turbulent flow in a slender enclosure. Theor. Comput. Fluid Dyn. 23(6), 471–489 (2009)CrossRefMATHGoogle Scholar
  25. 25.
    Kenjereš, S.: Electromagnetically driven dwarf tornados in turbulent convection. Phys. Fluids 23(1), Art. No. 015103, 1–10 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Kenjereš
    • 1
  • L. Pyrda
    • 2
  • E. Fornalik-Wajs
    • 2
  • J. S. Szmyd
    • 2
  1. 1.Transport Phenomena Section, Department of Chemical Engineering, Faculty of Applied SciencesDelft University of TechnologyBL DelftThe Netherlands
  2. 2.Department of Fundamental Research in Energy Engineering, Faculty of Energy and FuelsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations