Advertisement

Flow, Turbulence and Combustion

, Volume 91, Issue 3, pp 565–585 | Cite as

Coherent Structures in Oscillating Turbulent Boundary Layers Over a Fixed Rippled Bed

  • D. G. E. GrigoriadisEmail author
  • E. Balaras
  • A. A. Dimas
Article

Abstract

Coherent structures generated by oscillating turbulent boundary layers with or without a unidirectional current over a fixed, rippled bed are presented. The effect of ripple height and current intensity on the characteristics of these structures was investigated using a series of large-eddy simulations performed at Re α  = 23,163. These flows are typical in coastal regions where complex wave-current interactions occur. A cartesian flow solver was used with the rippled bed represented using the immersed boundary (IMB) method. Results are presented for three ripple steepness values and two current magnitudes. Three different types of coherent structures were identified with their size, shape and evolution largely depending on ripple steepness, while, their potential effect on sediment transport is discussed.

Keywords

LES Oscillatory boundary layer Coherent structures Finite difference methods Immersed boundary method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10494_2013_9489_MOESM1_ESM.gif (40.7 mb)
(GIF 40.6 MB)
10494_2013_9489_MOESM2_ESM.gif (39.6 mb)
(GIF 39.6 MB)
10494_2013_9489_MOESM3_ESM.gif (39.8 mb)
(GIF 39.8 MB)
10494_2013_9489_MOESM4_ESM.gif (39.5 mb)
(GIF 39.4 MB)
10494_2013_9489_MOESM5_ESM.gif (39.6 mb)
(GIF 39.5 MB)

References

  1. 1.
    Albayrak, I., Hopfinger, E.J., Lemmin, U.: Near-field flow structure of a confined wall jet on flat and concave rough walls. J. Fluid Mech. 606, 27–49 (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Balaras, E.: Modeling complex boundaries using an external force field on fixed Cartesian grids in large-eddy simulations. Comput. Fluids 33, 375–404 (2004)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barr, B.C., Sinn, D.N., Pierro, T., Winters, K.B.: Numerical simulation of turbulent, oscillatory flow over sand ripples. J. Geophys. Res. 109(C09009) (2004). doi: 10.1029/2002JC001709 CrossRefGoogle Scholar
  4. 4.
    Bowles, R.I.: Transition to turbulent flow in aerodynamics. Philos. Trans. R. Soc. Lond. A 358, 245–260 (2000)Google Scholar
  5. 5.
    Calhoun, R., Street, R.: Vortical structures in flow over topography: an LES at laboratory-scale. In: Proc. 13th Symp. on Boundary Layers and Turbulence, pp. 227–230. AMS, New York (1999)Google Scholar
  6. 6.
    Calhoun, R., Street, R.: Turbulent flow over a wavy surface: neutral case. J. Geophys. Res. 106, 9277–9294 (2001)CrossRefGoogle Scholar
  7. 7.
    Chou, Y.-J., Fringer, O.B.: A model for the simulation of coupled flow-bed form evolution in turbulent flows. J. Geophys. Res. Oceans 115, C10041 (2010)CrossRefGoogle Scholar
  8. 8.
    Chang, Y.S., Scotti A.: Entrainment and suspension of sediments into a turbulent flow over ripples. J. Turbul. 4(19), 1–22 (2003)Google Scholar
  9. 9.
    Ducros, F.D., Comte, P.C., Lesieur, M.: Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. J. Fluid Mech. 326, 1–36 (1996)CrossRefzbMATHGoogle Scholar
  10. 10.
    Fredsøe, J., Deigaard, R.: Mechanics of Coastal Sediment Transport. World Scientific, Singapore (1992)Google Scholar
  11. 11.
    Fredsøe, J., Andersen, K.H., Sumer, B.M.: Wave plus current over a ripple-covered bed. Coast. Eng. 38, 177–221 (1999)CrossRefGoogle Scholar
  12. 12.
    Grigoriadis, D.G.E., Balaras, E., Dimas, A.A.: Large-eddy simulation of wave turbulent boundary layer over rippled bed. Coast. Eng. 60, 174–189 (2012)CrossRefGoogle Scholar
  13. 13.
    Grigoriadis, D.G.E., Balaras, E., Dimas, A.A.: Large-eddy simulations of unidirectional water flow over dunes. J. Geophys. Res. 114(F02022) (2009). doi: 10.1029/2008JF001014 CrossRefGoogle Scholar
  14. 14.
    Henn, D.S., Sykes, R.I.: Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75–112 (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hino, M., Kashiwayanagi, M., Nakayama, A., Hara, T.: Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow. J. Fluid Mech. 131, 363–400 (1983)CrossRefGoogle Scholar
  16. 16.
    Hopfinger, E.J., Kurniawan, A., Graf, W.H., Lemmin, U.: Sediment erosion by Görtler vortices: the scour- hole problem. J. Fluid Mech. 520, 327–334 (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Hunt, J.C.R., Wray, A.A., Moin, P.: Eddies, streams and convergence zones in turbulent flows. In: Proceedings of the 1988 Summer Program, p. 193. Center for Turbulence Research (1988)Google Scholar
  18. 18.
    Jensen, B.L, Sumer B.M., Fredsœ, J.: Turbulent oscillatory boundary layers at high Reynolds numbers. J. Fluid Mech. 206, 265–297 (1989)CrossRefGoogle Scholar
  19. 19.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Maaß, C., Schumann, U.: Direct numerical simulation of separated turbulent flow over a wavy boundary. In: Hirsche, E.H. (ed.) Flow Simulation with High Performance Computers. Notes on Numerical Fluid Mechanics, vol. 52, pp. 227–241 (1996)Google Scholar
  21. 21.
    Nielsen, P.: Dynamics and geometry of wave-generated ripples. J. Geophys. Res. 86(C7), 6467–6472 (1981)CrossRefGoogle Scholar
  22. 22.
    O’Donoghue, T., Doucette, J.S., van der Werf, J.J., Ribberink, J.S.: The dimensions of sand ripples in full-scale oscillatory flows. Coast. Eng. 53, 997–1012 (2006)CrossRefGoogle Scholar
  23. 23.
    Osborne, P.D., Vincent, C.E.: Vertical and horizontal structure in susspended sand concentrations and wave-induced fluxes over bedforms. Mar. Geol. 131, 195–208 (1996)CrossRefGoogle Scholar
  24. 24.
    Ribberink, J.S., van der Werf, J.J., O’Donoghue, T., Hassan, W.N.M.: Sand motion induced by oscillatory flows: Sheet flow and vortex ripples. J. Turbul. 9(20), 1–32 (2008)Google Scholar
  25. 25.
    Salon, S., Armenio, V., Crise, A.: A numerical investigation of the Stokes boundary layer in the turbulent regime. J. Fluid Mech. 570, 253–296 (2007)CrossRefzbMATHGoogle Scholar
  26. 26.
    Salon, S., Armenio, V., Crise, A.: A numerical investigation of the turbulent StokesEkman bottom boundary layer. J. Fluid Mech. 684, 316–352 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Scandura, P., Blondeaux, P., Vittori, G.: Three-dimensional oscillatory flow over steep ripples. J. Fluid Mech. 412, 355–378 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Scotti, A., Piomelli, U.: Numerical simulation of pulsating turbulent channel. Phys. Fluids 13(5), 1367–1384 (2001)CrossRefGoogle Scholar
  29. 29.
    Wallace, J.M., Eckelmann, H., Brodkey, R.S.: The wall region in turbulent shear flow. J. Fluid Mech. 54(1), 39–48 (1972)CrossRefGoogle Scholar
  30. 30.
    Wiberg, P.L., Harris, C.E.: Ripple geometry in wave-dominated environments. J. Geophys. Res. 99(C1), 775–789 (1994)CrossRefGoogle Scholar
  31. 31.
    Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Ind., La Canada, California (1998)Google Scholar
  32. 32.
    Zedler, E.A., Street, R.L.: Large-eddy simulation of sediment transport: current over ripples. J. Hydraul. Eng. 127, 444–452 (2001)CrossRefGoogle Scholar
  33. 33.
    Zedler, E.A., Street, R.L.: Sediment transport over ripples in oscillatory flow. J. Hydraul. Eng. 132, 180–193 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • D. G. E. Grigoriadis
    • 1
    Email author
  • E. Balaras
    • 2
  • A. A. Dimas
    • 3
  1. 1.Computational Sciences laboratory UCY-CompSci, NIREAS Water Center, Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus
  2. 2.Department of Mechanical and Aerospace EngineeringThe George Washington UniversityWashingtonUSA
  3. 3.Department of Civil EngineeringUniversity of PatrasPatrasGreece

Personalised recommendations