Flow, Turbulence and Combustion

, Volume 91, Issue 3, pp 475–495 | Cite as

Direct Numerical Simulation of Turbulent Pipe Flow at Moderately High Reynolds Numbers

  • George K. El Khoury
  • Philipp Schlatter
  • Azad Noorani
  • Paul F. Fischer
  • Geert Brethouwer
  • Arne V. Johansson


Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Reτ = 180, 360, 550 and \(1\text{,}000\). The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y +  ≈ 100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.


Wall turbulence Pipes Channels Boundary layers Direct numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfredsson, P.H., Segalini, A., Örlü, R.: A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the “outer” peak. Phys. Fluids 23, 041702 (2011)CrossRefGoogle Scholar
  2. 2.
    Boersma, B.J.: Direct numerical simulation of turbulent pipe flow up to a Reynolds number of 61,000. J. Phys. 318, 042045 (2011)Google Scholar
  3. 3.
    Chauhan, K.A., Monkewitz, P.A., Nagib, H.M.: Criteria for assessing experiments in zero pressure gradient boundary layers. Fluid Dyn. Res. 41, 021404 (2009)CrossRefGoogle Scholar
  4. 4.
    Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: simson—A pseudo-spectral solver for incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07, KTH Mechanics, Stockholm, Sweden (2007)Google Scholar
  5. 5.
    Chin, C., Ooi, A.S.H., Marusic, I., Blackburn, H.M.: The influence of pipe length on turbulence statistics computed from direct numerical simulation data. Phys. Fluids 22, 115107 (2010)CrossRefGoogle Scholar
  6. 6.
    Coles, D.: The law of the wake in the turbulent boundary layer. J. Fluid Mech. 1, 191–226 (1956)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    del Álamo, J.C., Jiménez, J.: Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15, L41–L44 (2003)CrossRefGoogle Scholar
  8. 8.
    Eggels, J.G.M., Unger, F., Weiss, M.H., Westerweel, J., Adrian, R.J., Friedrich, R., Nieuwstadt, F.T.M.: Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175–209 (1994)CrossRefGoogle Scholar
  9. 9.
    Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: nek5000 web page. http://nek5000.mcs.anl.gov (2008)
  10. 10.
    Fukagata, K., Kasagi, N.: Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181, 478–498 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Guala, M., Hommema, S.E., Adrian, R.J.: Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521–542 (2006)CrossRefMATHGoogle Scholar
  12. 12.
    Hoyas, S., Jiménez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20, 101511 (2008)CrossRefGoogle Scholar
  13. 13.
    Jiménez, J., Hoyas, S.: Turbulent fluctuations above the buffer layer of wall-bounded flows. J. Fluid Mech. 611, 215–236 (2008)CrossRefMATHGoogle Scholar
  14. 14.
    Jiménez, J., Hoyas, S., Simens, M.P., Mizuno, Y.: Turbulent boundary layers and channels at moderate Reynolds numbers. J. Fluid Mech. 657, 335–360 (2010)CrossRefMATHGoogle Scholar
  15. 15.
    Kim, J., Moin, P., Moser, P.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)CrossRefMATHGoogle Scholar
  16. 16.
    Kim, K.C., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11, 417–422 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Klewicki, J., Chin, C., Blackburn, H.M., Ooi, A., Marusic, I.: Emergence of the four layer dynamical regime in turbulent pipe flow. Phys. Fluids 24, 045107 (2012)CrossRefGoogle Scholar
  18. 18.
    Lenaers, P., Li, Q., Brethouwer, Schlatter, P., Örlü, R.: Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24, 035110 (2012)CrossRefGoogle Scholar
  19. 19.
    Maday, Y., Patera, A.: Spectral element methods for the Navier–Stokes equations. In: Noor, A.K. (ed.) State of the Art Surveys in Computational Mechanics ASME, pp. 71–143 (1989)Google Scholar
  20. 20.
    Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J.: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22, 065103 (2010)CrossRefGoogle Scholar
  21. 21.
    Monty, J.P., Stewart, J.A., Williams, R.C., Chong, M.S.: Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147–156 (2007)CrossRefMATHGoogle Scholar
  22. 22.
    Moody, L.F.: Friction factors for pipe flow. Trans. ASME 66, 671–684 (1944)Google Scholar
  23. 23.
    Nagib, H.M., Chauhan, K.A.: Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20, 101518 (2008)CrossRefGoogle Scholar
  24. 24.
    Ohlsson, J., Schlatter, P., Mavriplis, C., Henningson, D.S.: The spectral-element method and the pseudo-spectral method—a comparative study. In: Rønquist, E. (ed.) Lecture Notes in Computational Science and Engineering, pp. 459–467. Springer, Berlin, Germany (2011)Google Scholar
  25. 25.
    Orlandi, P., Fatica, M.: Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343, 43–72 (1997)CrossRefMATHGoogle Scholar
  26. 26.
    Örlü, R., Schlatter, P.: On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows. Phys. Fluids 23, 021704 (2011)CrossRefGoogle Scholar
  27. 27.
    Schlatter, P., Örlü, R.: Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116–126 (2010)CrossRefMATHGoogle Scholar
  28. 28.
    Schlatter, P., Örlü, R.: Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)CrossRefMATHGoogle Scholar
  29. 29.
    Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to \({R}e_\theta=2\text{,}500\) studied through simulation and experiment. Phys. Fluids 21, 051702 (2009)CrossRefGoogle Scholar
  30. 30.
    Smits, A.J., McKeon, B.J., Marusic, I.: High-Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353–375 (2011)CrossRefGoogle Scholar
  31. 31.
    Spalart, P.R.: Direct simulation of a turbulent boundary layer up to R θ = 1410. J. Fluid Mech. 187, 61–98 (1988)CrossRefMATHGoogle Scholar
  32. 32.
    Talamelli, A., Persiani, F., Fransson, J.H.M., Alfredsson, P.H., Johansson, A., Nagib, H.M., Rüedi, J., Sreenivasan, K.R., Monkewitz, P.A.: CICLoPE—a response to the need for high Reynolds number experiments. Fluid Dyn. Res. 41, 1–22 (2009)CrossRefGoogle Scholar
  33. 33.
    Wagner, C., Hüttl, T.J., Friedrich, R.J.: Low-Reynolds-number effects derived from direct numerical simulations of turbulent pipe flow. Comp. Fluids 30, 581–590 (2001)CrossRefMATHGoogle Scholar
  34. 34.
    Walpot, R.J.E., van der Geld, C.W.M., Kuerten, J.G.M.: Determination of the coefficients of langevin models for inhomogeneous turbulent flows by three-dimensional particle tracking velocimetry and direct numerical simulation. Phys. Fluids 19, 045102 (2007)CrossRefGoogle Scholar
  35. 35.
    Wu, X., Baltzer, J.R., Adrian, R.J.: Direct numerical simulation of a 30R long turbulent pipe flow at R  +  = 685: large- and very large-scale motions. J. Fluid Mech. 698, 235–281 (2012)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Wu, X., Moin, P.: A direct numerical simulation study on the mean velocity characteristics in turbulent pipe flow. J. Fluid Mech. 608, 81–112 (2008)CrossRefMATHGoogle Scholar
  37. 37.
    Zagarola, M.V., Smits, A.J.: Scaling of the mean velocity profile for turbulent pipe flow. Phys. Rev. Lett. 78, 239–242 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • George K. El Khoury
    • 1
  • Philipp Schlatter
    • 1
  • Azad Noorani
    • 1
  • Paul F. Fischer
    • 2
  • Geert Brethouwer
    • 1
  • Arne V. Johansson
    • 1
  1. 1.Linné FLOW Centre and Swedish e-Science Research Centre (SeRC), KTH MechanicsRoyal Institute of TechnologyStockholmSweden
  2. 2.MCS, Argonne National LaboratoryArgonneUSA

Personalised recommendations