Skip to main content
Log in

Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite-Volume CFD Simulations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper investigates a recently proposed dynamic hybrid RANS-LES framework using a general-purpose finite-volume flow solver. The new method is highly generalized, allowing coupling of any selected RANS model with any selected LES model and containing no explicit grid dependence in its formulation. Selected results are presented for three test cases: two-dimensional channel flow, backward facing step, and a nozzle flow relevant to biomedical applications. Comparison with experimental and DNS data, and with other hybrid RANS-LES approaches, highlights the advantages of the new method and suggests that further investigation is warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope, S.B.: An explanation of the turbulent round-jet/plane-jet anomaly. AIAA J. 16, 279–281 (1973)

    Article  Google Scholar 

  2. Viti, V., Huang, G., Bradshaw, P.: Numerical study of stress-transport turbulence models: implementation and validation issues. Comput. Fluids 36, 1373–1383 (2007)

    Article  MATH  Google Scholar 

  3. Moin, P., Apte, S.V.: Large-eddy simulation of realistic gas turbine combustors. AIAA J. 44, 698–708 (2006)

    Article  Google Scholar 

  4. Mahesh, K., Constantinescu, G., Moin, P.: A new time-accurate finite-volume fractional-step algorithm for prediction of turbulent flows on unstructured hybrid meshes. J. Comput. Phys. 197, 215–240 (2004)

    Article  MATH  Google Scholar 

  5. Ciardi, M., Sagaut, P., Klein, M., Dawes, W.N.: A dynamic finite volume scheme for large-eddy simulation on unstructured grids. J. Comput. Phys. 210, 632–655 (2005)

    Article  MATH  Google Scholar 

  6. Domaradzki, J.A., Adams, N.A.: Direct modeling of subgrid scales of turbulence in large eddy simulations. J. Turbul. 3(24), 1–19 (2002)

    Google Scholar 

  7. Vreman, A.W.: The filtering analog of the variational multiscale method in large-eddy simulation. Phys. Fluids 15, L61–L64 (2003)

    Article  MathSciNet  Google Scholar 

  8. Grinstein, F.F., Fureby, C.: From canonical to complex flows: recent progress on monotonically integrated LES. Comput. Sci. Eng. 6, 36–49 (2004)

    Article  Google Scholar 

  9. Spalart, P.R.: Strategies for turbulence modelling and simulations. Int. J. Heat Fluid Flow 21, 252–263 (2000)

    Article  Google Scholar 

  10. Hunt, J.C.R.: The structure of velocity and pressure fields in turbulent flow over bluff bodies, hills and waves. J. Wind Eng. Ind. Aero. 36, 245–253 (1990)

    Article  Google Scholar 

  11. Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

    Article  MATH  Google Scholar 

  12. Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

    Article  Google Scholar 

  13. Wang, M., Moin, P.: Dynamic wall modeling for large-eddy simulation of complex turbulence flows. Phys. Fluids 14, 2043–2051 (2002)

    Article  MathSciNet  Google Scholar 

  14. Davidson, L., Dahlstrom, S.: Hybrid LES-RANS: an approach to make LES applicable at high Reynolds number. Int. J. Comput. Fluid Dyn. 19, 415–427 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hamba, F.: A hybrid RANS/LES simulation of high-Reynolds-number channel flow using additional filtering at the interface. Theoret. Comput. Fluid Dyn. 20, 89–101 (2006)

    Article  MATH  Google Scholar 

  16. Keating, A., Piomelli, U.: A dynamic stochastic forcing method as a wall-layer model for large-eddy simulation. J. Turbul. 7(12), 1–24 (2006)

    MathSciNet  Google Scholar 

  17. Spille-Kohoff, A., Kaltenbach, H-J.: Generation of turbulent inflow data with a prescribed shear stress profile. In: Liu, C., Sakell, L., Beutner, T. (eds.) DNS/LES Progress and Challenges, pp. 319–326. Greyden Press, Columbus (2001)

    Google Scholar 

  18. Schluter, J.U., Pitsch, H., Moin, P.: LES inflow conditions for coupling with Reynolds-averaged flow solvers. AIAA J. 42, 478–484 (2004)

    Article  Google Scholar 

  19. Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42, 485–492 (2004)

    Article  Google Scholar 

  20. Spalart, P.R., Jou, W-H., Stretlets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach. In: Advances in DNS/LES, Proceedings of the First AFOSR International Conference on DNS/LES (1997)

  21. Spalart, P.R., Deck S., Shur M.L., Squires, K.D., Strelets, M., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theoret. Comput. Fluid Dyn. 20, 191–195 (2006)

    Google Scholar 

  22. Shur, M.L., Spalart, P.R., Strelets, M., Travin, A.: A hybrid RANS-LES mmodel with delayed DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

    Article  Google Scholar 

  23. Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. Rech. Aerospatiale 1, 5–21 (1994)

    Google Scholar 

  24. Girimaji, S.S.: Partially-averaged navier-stokes model for turbulence: a reynolds-averaged navier-stokes to direct numerical simulation bridging method. J. Appl. Mech.–T ASME 73, 413–421 (2006)

    Article  MATH  Google Scholar 

  25. Fadai-Ghotbi, A., Friess, C., Manceau, R., Gatski, T.B., Boree, J.: Temporal filtering: a consistent formalism for seamless hybrid RANS–LES modeling in inhomogeneous turbulence. Int. J. Heat Fluid Flow 31, 378–389 (2010)

    Article  Google Scholar 

  26. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: theory and model description. Flow Turbul. Combust. 85, 113–138 (2010)

    Article  MATH  Google Scholar 

  27. Egorov, Y., Menter, F.R., Lechner, R., Cokljat, D.: The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: application to complex flows. Flow Turbul. Combust. 85, 139–165 (2010)

    MATH  Google Scholar 

  28. Spalart, P.R.: Detached-eddy simulation. Ann. Rev. Fluid Mech. 41, 181–202 (2009)

    Article  Google Scholar 

  29. Bhushan, S., Walters, D.K.: A dynamic hybrid RANS/LES modeling framework. Phys. Fluids 24, 1–7 (2012)

    Google Scholar 

  30. Bhushan, S., Warsi, Z.U.A., Walters, D.K.: Estimating backscatter in subgrid scale turbulence through algebraic modeling. AIAA J. 44, 837–847 (2006)

    Article  Google Scholar 

  31. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to Re τ  = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  32. Hoyas, S., Jimenez, J.: Scaling of the velocity fluctuations in turbulent channels up to Re τ  = 2003. Phys. Fluids 18, 011702 (2006)

    Article  Google Scholar 

  33. Smagorinsky, J.: General Circulation experiments with the primitive equations I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)

    Article  Google Scholar 

  34. Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4, 633–635 (1992)

    Article  Google Scholar 

  35. Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation. AIAA J. 37, 544–556 (1999)

    Article  Google Scholar 

  36. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)

    Article  Google Scholar 

  37. Menter, F.R.: Review of the SST turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn. 23, 305–316 (2009)

    Article  MATH  Google Scholar 

  38. Patankar, S.V., Spalding, D.B.: A calculation procedure for heat, mass, and momentum transfer in three-dimensional parabolic flows. Int. J. Heat Mass Transfer 15, 1787–1806 (1972)

    Article  MATH  Google Scholar 

  39. Rhie, C.M., Chow W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)

    Article  MATH  Google Scholar 

  40. Jasak, H., Weller, H.G., Gosman, A.D.: High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 31, 431–449 (1999)

    Article  MATH  Google Scholar 

  41. Margolin, L.G., Rider, W.J.: Numerical regularization: the numerical analysis of implicit subgrid models. In: Grinstein, Margolin, Rider (eds.) Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, pp. 195–221. Cambridge University Press, New York (2007)

    Chapter  Google Scholar 

  42. Margolin, L.G., Rider, W.J.: The design and construction of implicit LES models. Int. J. Numer. Methods Fluid 47, 1173–1179 (2005)

    Article  MATH  Google Scholar 

  43. Adedoyin, A.A., Walters, D.K., Bhushan, S.: Assessment of modeling and discretization error in finite-volume large eddy simulations. ASME Paper No. IMECE2006-14918 (2006)

  44. Kang, H.S., Chester, S., Meneveau, C.: Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation. J. Fluid Mech. 480, 129–160 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Leonard, B.P.: A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Eng. 19, 59–98 (1979)

    Article  MATH  Google Scholar 

  46. Wei, T., Willmarth, W.W.: Reynolds number effects on the structure of a turbulent channel flow. J. Fluid Mech. 204, 57–95 (1989)

    Article  Google Scholar 

  47. Fureby, C., Grinstein, F.F.: Large eddy simulation of high-Reynolds-number free and wall-bounded flows. J. Comput. Phys. 181, 68–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  48. Driver, D.M., Seegmiller, H.L.: Features of a reattaching turbulent shear layer in divergent channel flow. AIAA J. 23, 163–171 (1985)

    Article  Google Scholar 

  49. Grinstein, F.F., Fureby, C.: Recent progress on MILES for high reynolds number flows. J. Fluid Eng. 124, 848–861 (2002)

    Article  Google Scholar 

  50. Hariharan, P., Giarra, M., Reddy, V., et al.: Multilaboratory particle image velocimetry analysis of the FDA Benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133, 1–14 (2011)

    Google Scholar 

  51. Stewart, S., Paterson, E.G., Burgreen, G.W., et al.: Turbulence modeling as a source of error in FDA’s ‘critical path’: interlaboratory computational study of flow in a nozzle model. In: FDA/NHLBI/NSF Workshop on Computer Methods for Cardiovascular Devices, Maryland, USA, 10–11 June 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Walters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walters, D.K., Bhushan, S., Alam, M.F. et al. Investigation of a Dynamic Hybrid RANS/LES Modelling Methodology for Finite-Volume CFD Simulations. Flow Turbulence Combust 91, 643–667 (2013). https://doi.org/10.1007/s10494-013-9481-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-013-9481-9

Keywords

Navigation