Flow, Turbulence and Combustion

, Volume 92, Issue 1–2, pp 269–297 | Cite as

On The Validation of LES Applied to Internal Combustion Engine Flows: Part 1: Comprehensive Experimental Database

  • E. Baum
  • B. PetersonEmail author
  • B. Böhm
  • A. Dreizler


Improved understanding of in-cylinder flows requires knowledge from well-resolved experimental velocimetry measurements and flow simulation modeling. Engine simulations using large eddy simulations (LES) are making large progress and the need for well documented velocimetry measurements for model validation is high. This work presents velocimetry measurements from PIV, high-speed PIV, stereoscopic PIV, and tomographic PIV to extensively describe the in-cylinder flow field in a motored optical engine operating at 800 RPM. These measurements also establish a comprehensive database designed for LES model development and validation. Details of the engine, engine accessory components, and well-controlled boundary conditions and engine operation are presented. The first two statistical moments of the flow field are computed and show excellent agreement among the PIV database. Analysis of statistical moments based on limited sample size is presented and is important for modeling validation purposes. High-speed PIV resolved the instantaneous flow field throughout entire engine cycles (i.e. 719 consecutive crank-angles), while tomographic PIV images are further used to investigate the 3D flow field and identify regions of strong vortical structures identified by the Q-criterion. Principle velocity gradient components are computed and emphasize the need to resolve similar spatial scales between experimental and modeling efforts for suitable model validation.


Particle image velocimetry (PIV) Stereoscopic PIV Tomographic PIV High-speed PIV In-cylinder flow field, experimental database for LES validation Internal combustion engines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)Google Scholar
  2. 2.
    Peterson, B., Reuss, D.L., Sick, V.: High-speed imaging analysis of misfires in a spray-guided direct injection engine. Proc. Combust. Inst. 33, 3089–3096 (2011)CrossRefGoogle Scholar
  3. 3.
    Drake, M.C., Haworth, D.C.: Advanced gasoline engine development using optical diagnostics and numerical modeling. Proc. Combust. Inst. 31, 99–124 (2007)CrossRefGoogle Scholar
  4. 4.
    Drake, M.C., Fansler, T.D., Lippert, A.M: Stratified-charge combustion: modeling and imaging of a spray-guided direct-injection spark-ignition engine. Proc. Combust. Inst. 30, 2683–2691 (2005)CrossRefGoogle Scholar
  5. 5.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)CrossRefGoogle Scholar
  6. 6.
    Pitsch, H: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Haworth, D.C: Large-eddy simulation of in-cylinder flows. Oil Gas Sci. Technol. Review IFP 54, 175–185 (1999)CrossRefGoogle Scholar
  8. 8.
    Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air-fuel mixing in realistic DISI engines. Proc. Combust. Inst. 32, 2759–2766 (2009)CrossRefGoogle Scholar
  9. 9.
    Enaux, B., Granet, V., Vermorel, O., Lacour, C., Thobois, L., Dugué, V., Poinsot, T.: Large eddy simulation of a motored single-cylinder piston engine: numerical strategies and validation. Flow Turbulence Combust. 86, 153–177 (2010)CrossRefGoogle Scholar
  10. 10.
    Hasse, C., Sohm, V., Durst, B.: Numerical investigation of cyclic variation in gasoline engines using a hybrid URANS/LES modeling approach. Comput. Fluids 25, 25–48 (2010)CrossRefGoogle Scholar
  11. 11.
    Vermorel, O., Richard, S., Colin, O., Angelberger, C., Benkenida, A., Veynante, D.: Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES. Combust. Flame 156, 1545–1541 (2007)Google Scholar
  12. 12.
    Abraham, P.S., Liu, K., Haworth, D., Reuss, D.L., Sick, V.: Evaluating LES and PIV with phase-invariant POD. Oil Gas Sci. Technol. (2013). doi: 10.2516/ogst/2013126
  13. 13.
    Dreizler, A., Janicka, J.: Diagnostic challenges for gas turbine combustor model validation. In: Kohse-Höinghaus, K., Jeffries, J.B. (eds.) Applied Combustion Diagnostics. Taylor and Francis, New York (2002)Google Scholar
  14. 14.
    Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)CrossRefGoogle Scholar
  15. 15.
    Kempf, A.M.: LES validation from experiments. Flow Turbulence Combust. 80, 351–373 (2007)CrossRefGoogle Scholar
  16. 16.
    Böhm, B., Brübach, J., Ertem, C., Dreizler, A.: Experiments for combustion LES validation. Flow Turbulence Combust. 80, 507–529 (2008)CrossRefGoogle Scholar
  17. 17.
    Reuss, D.L., Adrian R.J., Landreth, C.C., French, D.T., Fansler, T.D.: Instantaneous planar measurements of velocity and large-scale vorticity and strain rate in an engine using particle-image velocimetry. SAE Paper 890616 (1989)Google Scholar
  18. 18.
    Funk, C., Sick, V., Reuss, D.L., Dahm, W.J.A.: Turbulence properties of high and low swirl in-cylinder flows. SAE Paper 2002-01-2841 (2002)Google Scholar
  19. 19.
    Li, Y., Zhao, H., Peng. Z., Ladommatos, N.: Particle image velocimetry measurement of in-cylinder flow in internal combustion engines—experiment and flow structure analysis. Proc. Inst. Mech. Eng. 216, 65–81 (2002)Google Scholar
  20. 20.
    Calendini, P., Lecerf, T., Trinite, M.: In cylinder velocity measurements with stereoscopic particle image velocimetry in a SI engine. SAE Paper 2000-01-1798 (2000)Google Scholar
  21. 21.
    Lacour, C., Pera, C.: An experimental database dedicated to the study and modeling of cyclic variability in spark-ignition engines with LES. SAE Paper 2011-01-1282 (2011)Google Scholar
  22. 22.
    Obokata, T., Kato, M., Ishima, T., Kaneko, M.: Database constructions by LDA and PIV to verify the numerical simulation of gas flows in the cylinder of a motored engine. SAE Paper 2009-28-0010 (2009)Google Scholar
  23. 23.
    Farjardo, C., Sick, V.: Kinetic energy and dissipation rate spectra of high- and low- swirl internal combustion engine flows. SAE Paper 2009-01-0651 (2009)Google Scholar
  24. 24.
    Breuer, S., Oberlack, M., Peters, N.: Non-isotropic length scales during the compression stroke of a motored piston engine. Flow Turbulence Combust. 74, 145–167 (2005)CrossRefzbMATHGoogle Scholar
  25. 25.
    Voisine, M., Thomas, L., Borée, J.: Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow. Exp. Fluids 50, 1393–1407 (2011)CrossRefGoogle Scholar
  26. 26.
    Dannemann, J., Pielhop K., Klaas, M., Schröder, W.: Cycle resolved multi-planar flow measurements in a four-valve combustion engine. Exp. Fluids 50, 961–976 (2011)CrossRefGoogle Scholar
  27. 27.
    Bücker, I., Karhoff, D.-C., Klaas, M., Schröder, W.: Stereoscopic multi-planar PIV measurements of in-cylinder tumbling flow. Exp. Fluids 53, 1993–2009 (2012)CrossRefGoogle Scholar
  28. 28.
    Müller, S.H.R., Böhm, B., Gleißner, M., Grzeszik, R., Arndt, S., Dreizler, A.: Flow field measurements in an optically accessible, direct-injection spray-guided internal combustion engine using high-speed PIV. Exp. Fluids 48, 281–290 (2010)CrossRefGoogle Scholar
  29. 29.
    Towers, D.P., Towers, C.E.: Cyclic variability measurements of in-cylinder engine flows using high-speed particle image velocimetry. Meas. Sci. Tech. 15, 1917–1925 (2004)CrossRefGoogle Scholar
  30. 30.
    Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from PIV data. Exp. Fluids 39, 1009–1023 (2005)CrossRefGoogle Scholar
  31. 31.
    Buschbeck, N., Bittner, N., Halfmann, T., Arndt, S.: Dependence of combustion dynamics in a gasoline engine upon the in-cylinder flow field, determined by high-speed PIV. Exp. Fluids 53, 1701–1712 (2012)CrossRefGoogle Scholar
  32. 32.
    Peterson, B., Sick, V.: High-speed flow and fuel imaging study of available spark energy in a spray-guided direct-injection engine and implications on misfires. Int. J. Engine Res. 11, 313–329 (2010)CrossRefGoogle Scholar
  33. 33.
    Farjardo, C., Sick, V.: Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution. Proc. Combust. Inst. 31, 3023–3031 (2007)CrossRefGoogle Scholar
  34. 34.
    Mounaïm-Rousselle, C., Landry, L., Halter, F., Foucher, F.: Experimental characteristics of turbulent premixed flame in a boosted spark-ignition engine. Proc. Combust. Inst. 34, 2941–2949 (2013)CrossRefGoogle Scholar
  35. 35.
    Alharbi, A.Y., Sick, V.: Investigation of boundary layers in internal combustion engines using a hybrid algorithm of high speed micro-PIV and PTV. Exp. Fluids 49, 949–959 (2010)CrossRefGoogle Scholar
  36. 36.
    Jainski, C., Lu, L., Dreizler, A., Sick, V.: High-speed micro particle image velocimetry studies of boundary layer flows in a direct-injection engine. Int. J. Engine Res. (2012). doi: 10.1177/1468087412455746 Google Scholar
  37. 37.
    Baum, E., Peterson, B., Surmann, C., Michaelis, D., Böhm, B., Dreizler, A.: Investigation of the 3D flow field in an IC engine using tomographic PIV. Proc. Combust. Inst. 34, 2903–2910 (2013)Google Scholar
  38. 38.
    Baum, E., Peterson, B., Surmann, C., Michaelis, D., Böhm, B., Dreizler, A.: Tomographic PIV measurements in an IC engine. In: 16th Int. Symp. on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 09–12 July (2012)Google Scholar
  39. 39.
    Peterson, K., Regaard, B., Heinemann, S., Sick, V.: Single-camera, three-dimensional particle tracking velocimetry. Opt. Express 20, 9031–9037 (2012)CrossRefGoogle Scholar
  40. 40.
    Adrian, R.J.: Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas. Sci. Tech. 8, 1393–1398 (1997)CrossRefGoogle Scholar
  41. 41.
    Westerweel, J.: Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids 16, 236–247 (1994)Google Scholar
  42. 42.
    Elsinga, G.E., Scarano, F., Wieneke, B., van Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41, 933–947 (2006)CrossRefGoogle Scholar
  43. 43.
    Wieneke, B.: Volume self-calibration for 3D particle image velocimetry. Exp. Fluids 45, 549–556 (2008)CrossRefGoogle Scholar
  44. 44.
    Herman, G.T., Lent, A.: Iterative reconstruction algorithms. Comput. Biol. Med. 6, 273–294 (1976)CrossRefGoogle Scholar
  45. 45.
    Westerweel, J.: Fundamentals of digital particle image velocimetry. Meas. Sci. Tech. 13, 1379–1392 (1997)CrossRefGoogle Scholar
  46. 46.
    Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Tech. 8, 1406–1416 (1997)CrossRefGoogle Scholar
  47. 47.
    Keane, R.D., Adrian, R.J.: Optimization of particle image velocimeters. Part 1: double pulsed systems. Meas. Sci. Tech. 1, 1202–1215 (1990)CrossRefGoogle Scholar
  48. 48.
    Megerle, M., Sick, V., Reuss, D.L.: Measurement of digital particle image velocimetry precision using electro-optically created particle-image displacements. Meas. Sci. Tech. 13, 997–1005 (2002)CrossRefGoogle Scholar
  49. 49.
    Reuss, D.L., Megerle, M., Sick, V.: Particle-image velocimetry measurement errors when imaging through a transparent engine cylinder. Meas. Sci. Tech. 13, 1029–1035 (2002)CrossRefGoogle Scholar
  50. 50.
    Luff, J.D., Drouillard, T., Rompage, A.M., Linne, M.A., Hertzberg, J.R.: Experimental uncertainties associated with particle image velocimetry (PIV) based velocity algorithms. Exp. Fluids 26, 36–54 (1999)CrossRefGoogle Scholar
  51. 51.
    Peterson, B.: High-Speed Fuel and Flow Imaging to Investigate Misfires in a Spray-Guided Direct-Injection Engine. PhD Dissertation, University of Michigan (2010)Google Scholar
  52. 52.
    Celik, I., Klein, M., Freitag, M., Janicka, J.: Assessment for URANS/DES/LES: an overview with applications. J. Turbul. 7, 1–27 (2006)CrossRefMathSciNetGoogle Scholar
  53. 53.
    Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., Poinsot, T.: Large-eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combust. Flame 159, 1562–1575 (2012)CrossRefGoogle Scholar
  54. 54.
    Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Flow field studies of a new series of turbulent premixed stratified flames. Combust. Flame 157, 384–396 (2010)CrossRefGoogle Scholar
  55. 55.
    Bendat, J.S., Piersol, A.G.: Random Data Analysis and Measurement Procedures 4th edn. John Wiley and Sons, Inc., Hoboken (2010)CrossRefzbMATHGoogle Scholar
  56. 56.
    Hunt, C.R., Wray, A.A., Moin, P.: Eddies, stream, and the convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, 193 (1988)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Fachgebiet Reaktive Strömungen und MesstechnikTechnische Universität DarmstadtPetersenstrasse 32Germany
  2. 2.Fachgebiet Energie- und KraftwerkstechnikTechnische Universität DarmstadtPetersenstrasse 32Germany

Personalised recommendations