Flow, Turbulence and Combustion

, Volume 91, Issue 1, pp 79–103 | Cite as

Vertical Motions of Heavy Inertial Particles Smaller than the Smallest Scale of the Turbulence in Strongly Stratified Turbulence

  • F. C. G. A. Nicolleau
  • K.-S. Sung
  • J. C. Vassilicos


We study the statistics of the vertical motion of inertial particles in strongly stratified turbulence. We use Kinematic Simulation (KS) and Rapid Distortion Theory (RDT) to study the mean position and the root mean square (rms) of the position fluctuation in the vertical direction. We vary the strength of the stratification and the particle inertial characteristic time. The stratification is modelled using the Boussinesq equation and solved in the limit of RDT. The validity of the approximations used here requires that \( \sqrt{{L}/{g}} < {2\pi}/{\mathcal{N}} < \tau_{\eta} \), where τ η is the Kolmogorov time scale, g the gravitational acceleration, L the turbulence integral length scale and \(\mathcal{N}\) the Brunt–Väisälä frequency. We introduce a drift Froude number \(Fr_{d} = \tau_p g / \mathcal{N} L\). When Fr d  < 1, the rms of the inertial particle displacement fluctuation is the same as for fluid elements, i.e. \(\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 1.22\, u'/\mathcal{N} + \mbox{oscillations}\). However, when Fr d  > 1, \(\langle(\zeta_3 - \langle \zeta_3 \rangle)^2\rangle^{1/2} = 267 \, u' \tau_p\). That is the level of the fluctuation is controlled by the particle inertia τ p and not by the buoyancy frequency \(\mathcal{N}\). In other words it seems possible for inertial particles to retain the vertical capping while loosing the memory of the Brunt–Väisälä frequency.


Particle dispersion Kinematic Simulation Rapid Distortion Stratified turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cambon, C., Godeferd, F., Nicolleau, F., Vassilicos, J.: Turbulent diffusion in rapidly rotating turbulence with or without stable stratification. J. Fluid Mech. 499, 231–255 (2004). doi: 10.1017/S0022112003007055 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Chen, L., Goto, S., Vassilicos, J.: Turbulent clustering of stagnation points and inertial particles. J. 2Fluid Mech. 553, 143–154 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fung, J.: Effect of nonlinear drag on the settling velocity of particles in homogeneous isotropic turbulence. J. Geophys. Res. 103(C12), 27,905–27,917 (1998)CrossRefGoogle Scholar
  4. 4.
    Fung, J., Hunt, J., Malik, N., Perkins, R.: Kinematic simulation of homogeneous turbulence by unsteady random fourier modes. J. Fluid Mech. 236, 281–317 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gatignol, R.: The faxen formulae for a rigid particle in an unsteady non-uniform stokes flow. J. Mech. Theory Appl. 1(2), 143–160 (1983)Google Scholar
  6. 6.
    Godeferd, F.S., Cambon, C.: Detailed investigation of energy transfers in homogeneous stratified turbulence. Phys. Fluids 6, 2084–2100 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Godeferd, F., Malik, N., Cambon, C., Nicolleau, F.: Eulerian and lagrangian statistics in homogeneous stratified flows. Appl. Sci. Res. 57, 319–335 (1997). doi: 10.1007/BF02506067 zbMATHCrossRefGoogle Scholar
  8. 8.
    Kaneda, Y., Ishida, T.: Suppression of vertical diffusion in strongly stratified turbulence. J. Fluid Mech. 402, 311–327 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Kimura, Y., Herring, J.R.: Diffusion in stably stratified turbulence. J. Fluid Mech. 328, 253–269 (1996)zbMATHCrossRefGoogle Scholar
  10. 10.
    Liechtenstein, L., Cambon, C., Godeferd, F.: Nonlinear formation of structures in rotating stratified turbulence. J. Turbul. 6(24), 1–18 (2005)MathSciNetGoogle Scholar
  11. 11.
    Maxey, M.R.: The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441–465 (1987)zbMATHCrossRefGoogle Scholar
  12. 12.
    Maxey, M.R., Riley, J.J.: Equation of motion for a small rigid in a nonuniform flow. Phys. Fluids 26(4), 883–889 (1983)zbMATHCrossRefGoogle Scholar
  13. 13.
    Nicolleau, F., Nowakowski, A.: Presence of a richardson’s regime in kinematic simulations. Phys. Rev. E 83, 056,317 (2011). doi: 10.1103/PhysRevE.83.056317 CrossRefGoogle Scholar
  14. 14.
    Nicolleau, F., Vassilicos, J.: Turbulent diffusion in stably stratified non-decaying turbulence. J. Fluid Mech. 410, 123–146 (2000). doi: 10.1017/S0022112099008113 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Nicolleau, F., Yu, G.: Turbulence with combined stratification and rotation, limitations of corrsin’s hypothesis. Phys. Rev. E 76(6), 066,302 (2007). doi: 10.1103/PhysRevE.76.066302 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Nicolleau, F., Yu, G., Vassilicos, J.: Kinematic simulation for stably stratified and rotating turbulence. Fluid Dyn. Res. 40(1), 68–93 (2008). doi: 10.1016/j.fluiddyn.2006.08.011 MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Tennekes, H.: Eulerian and lagrangian time microscales in isotropic turbulence. J. Fluid Mech. 67, 561–567 (1975)zbMATHCrossRefGoogle Scholar
  18. 18.
    Wang, L., Maxey, M.R.: Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68 (1993)CrossRefGoogle Scholar
  19. 19.
    Yang, C.Y., Lei, U.: The role of the turbulent scales in the settling velocity of heavy particles in homoheneous isotropic turbulence. J. Fluid Mech. 371, 179–205 (1998)zbMATHCrossRefGoogle Scholar
  20. 20.
    van Aartrijk, M., Clercx, H.J.H.: Dispersion of heavy particles in stably stratified turbulence. Phys. Fluids 21(03), 033,304 (2009)CrossRefGoogle Scholar
  21. 21.
    van Harren, L.: Theoretical study qnd modelling of turbulence in the presence of internal waves. Ph.D. Thesis, Ecole Centrale de Lyon, Ecully, France (1993)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • F. C. G. A. Nicolleau
    • 1
  • K.-S. Sung
    • 2
  • J. C. Vassilicos
    • 2
  1. 1.Department of Mechanical EngineeringThe University of Sheffield, SFMGSheffieldUnited Kingdom
  2. 2.Department of AeronauticsImperial College LondonLondonUnited Kingdom

Personalised recommendations