Flow, Turbulence and Combustion

, Volume 91, Issue 1, pp 41–61 | Cite as

Assessment of Uncertainties in Modeling of Laminar to Turbulent Transition for Transonic Flows

  • Rene PecnikEmail author
  • Jeroen A. S. Witteveen
  • Gianluca Iaccarino


The effect of physical variability and uncertainty in model correlations on laminar-turbulent transition in transonic flows is computed using two different Stochastic Collocation methods. Physical variability in the boundary conditions is first investigated for a flow over a flat plate with and without pressure gradient to quantify the uncertainties on the skin friction distribution along the plate surface. Since the laboratory conditions for the flat plate test cases are well defined and the applied transition model has been tuned for these cases, good agreement with experiments is achieved and the variability in the output is low. The second investigated cases exhibit boundary layer transition on the surface of a highly loaded turbine guide vane under transonic flow conditions. Comparisons between the predicted and measured wall heat transfer are used to quantify uncertainties in the free stream turbulence and the model correlations that accounts for compressibility effects on the onset and extension of the bypass transition. The computational results show that the uncertainties have a significant impact on the transition location for the turbine guide vane simulations and, consequently, on the reliability of the predictions for compressible flows. The output uncertainty accounts to a large extent for the difference between the deterministic simulation and the experiments. The results from the Simplex Stochastic Collocation method are computationally more efficient than those of the Stochastic Collocation based on Clenshaw–Curtis quadrature.


Transition modeling Uncertainty quantification Reynolds-averaged Navier–Stokes Heat transfer Turbine guide vane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mayle, R., Schulz, A.: The path to predicting bypass transition. J. Turbomach. 119(3), 405–411 (1997)CrossRefGoogle Scholar
  2. 2.
    Pecnik, R., Sanz, W., Gehrer, A., Woisetschlger, J.: Transition modeling using two different intermittency transport equations. Flow Turbul. Combust. 70(1–4), 299–323 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Pecnik, R., Sanz, W.: Application of the turbulent potential model to heat transfer predictions on a turbine guide vane. J. Turbomach. 129(3), 628–635 (2007)CrossRefGoogle Scholar
  4. 4.
    Gopinathrao, N.P., Mabilat, C., Alizadeh, S.: Non-deterministic thermo-fluid analysis of a compressor rotor-stator cavity. In: 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2009)Google Scholar
  5. 5.
    Loeven, G.J.A., Bijl, H.: The application of the probabilistic collocation method to a transonic axial flow compressor. In: 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2010)Google Scholar
  6. 6.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  7. 7.
    Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47(12), 2894–2906 (2009)CrossRefGoogle Scholar
  8. 8.
    Savill, A.: A synthesis of t3 test case predictions. In: Pironneau, C.O., et al. (ed.) Numerical Simulation of Unsteady Flows and Transition to Turbulence, pp. 404–442. Cambridge University Press, Cambridge (1992)Google Scholar
  9. 9.
    Arts, T., de Rouvroit, M.L.: Aero-thermal performance of a two-dimensional highly loaded transonic turbine nozzle guide vane. A test case for inviscid and viscous flow computations. J. Turbomach. 114(1), 147–154 (1992)CrossRefGoogle Scholar
  10. 10.
    Babuška, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM J. Numer. Anal. 45(3), 1005–1034 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Xiu, D., Hesthaven, J.S.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Witteveen, J.A.S., Iaccarino, G.: Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput. 34, A814–A838 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Witteveen, J.A.S., Iaccarino, G.: Refinement criteria for simplex stochastic collocation with local extremum diminishing robustness. SIAM J. Sci. Comput. 34, A1522–A1543 (2012)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Pecnik, R., Terrapon, V., Ham, F., Iaccarino, G., Pitsch, H.: Reynolds-averaged navier-stokes simulations of the hyshot II scramjet. AIAA J. 50(8), 1717–1732 (2012)CrossRefGoogle Scholar
  15. 15.
    Toro, E.F., Spruce, M., Speares, W.: Restoration of the contact surface in the hll-riemann solver. Shock Waves 4(1), 25–34 (1994)zbMATHCrossRefGoogle Scholar
  16. 16.
    Batten, P., Leschziner, M.A., Goldberg, U.C.: Average-state Jacobians and implicit methods for compressible viscous and turbulent flows. J. Comput. Phys. 137, 38–78 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Satish, B., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. (2012)
  18. 18.
    Chen, K., Thyson, N.: Extension of emmons’ spot theory to flows on blunt bodies. AIAA J. 9, 821–825 (1971)CrossRefGoogle Scholar
  19. 19.
    Narasimha, R.: The laminar-turbulent transition zone in the boundary layer. Prog. Aerosp. Sci. 22(1), 29–80 (1985)CrossRefGoogle Scholar
  20. 20.
    Boyle, R.J., Simon, F.F.: Mach number effects on turbine blade transition length prediction. J. Turbomach. 121(4), 694–702 (1999)CrossRefGoogle Scholar
  21. 21.
    Steelant, J., Dick, E.: Modeling of laminar-turbulent transition for high freestream turbulence. ASME J. Fluids Eng. Trans. 123(1), 22–30 (2001)CrossRefGoogle Scholar
  22. 22.
    Mack, L.: Linear stability theory and the problem of supersonic boundary-layer transition. AIAA J. 13(3), 278–289 (1975)CrossRefGoogle Scholar
  23. 23.
    Antonia, R.: On estimating mean and instantaneous turbulent energy dissipation rates with hot wires. Exp. Therm. Fluid Sci. 27(2), 151–157 (2003)CrossRefGoogle Scholar
  24. 24.
    Elsner, J.W., Elsner, W.: On the measurement of turbulence energy dissipation. Meas. Sci. Technol. 7(10), 1334 (1996)CrossRefGoogle Scholar
  25. 25.
    Mohamed, M.S., Larue, J.C.: The decay power law in grid-generated turbulence. J. Fluid Mech. 219, 195–214 (1990)CrossRefGoogle Scholar
  26. 26.
    Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55(1–3), 271–280 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Durbin, P.A., Reif, B.A.P.: Models with tensor variables. In: Statistical Theory and Modeling for Turbulent Flows, pp. 155–215. John Wiley & Sons, Ltd (2010)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Rene Pecnik
    • 1
    Email author
  • Jeroen A. S. Witteveen
    • 2
  • Gianluca Iaccarino
    • 3
  1. 1.Process and Energy DepartmentDelft University of TechnologyDelftThe Netherlands
  2. 2.Center for Turbulence ResearchStanford UniversityStanfordUSA
  3. 3.Mechanical Engineering DepartmentStanford UniversityStanfordUSA

Personalised recommendations