Flow, Turbulence and Combustion

, Volume 90, Issue 4, pp 763–783 | Cite as

A Discrete Adjoint Approach for the Optimization of Unsteady Turbulent Flows

  • Rolf Roth
  • Stefan Ulbrich


In this paper we present a discrete adjoint approach for the optimization of unsteady, turbulent flows. While discrete adjoint methods usually rely on the use of the reverse mode of Automatic Differentiation (AD), which is difficult to apply to complex unsteady problems, our approach is based on the discrete adjoint equation directly and can be implemented efficiently with the use of a sparse forward mode of AD. We demonstrate the approach on the basis of a parallel, multigrid flow solver that incorporates various turbulence models. Due to grid deformation routines also shape optimization problems can be handled. We consider the relevant aspects, in particular the efficient generation of the discrete adjoint equation and the parallel implementation of a multigrid method for the adjoint, which is derived from the multigrid scheme of the flow solver. Numerical results show the efficiency of the approach for a shape optimization problem involving a three dimensional Large Eddy Simulation (LES).


Discrete adjoint Optimal control Shape optimization Automatic differentiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    FASTEST User Manual: Fachgebiet Numerische Berechnungsverfahren im Maschinenbau. Technische Universität Darmstadt (2005)Google Scholar
  2. 2.
    MPI: A message-passing interface standard, Version 2.2. Message Passing Interface Forum (2009)Google Scholar
  3. 3.
    Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W., Kaushik, D., Knepley, M., McInnes, L., Smith, B., Zhang, H.: Petsc Users Manual Revision 3.2 (2011)Google Scholar
  4. 4.
    Briggs, W., Henson, V., McCormick, S.: A multigrid tutorial. Society for Industrial Mathematics (2000)Google Scholar
  5. 5.
    Carnarius, A., Thiele, F., Özkaya, E., Gauger, N.: Adjoint approaches for optimal flow control. In: 5th Flow Control Conference, AIAA Paper AIAA-2010-5088, Chicago, Illinois (2010)Google Scholar
  6. 6.
    Chien, K.Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33–38 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Christianson, B.: Reverse accumulation and attractive fixed points. Optim. Methods Softw. 3(4), 311–326 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Durst, F., Schäfer, M.: A parallel block structured multigrid method for the prediction of incompressible flows. Int. J. Numer. Methods Fluids 22(6), 549–565 (1996)zbMATHCrossRefGoogle Scholar
  9. 9.
    Elman, H., Howle, V., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Germano, M.: Turbulence: the filtering approach. J. Fluid Mech. 238, 325–336 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Giering, R., Kaminski, T., Slawig, T.: Generating efficient derivative code with TAF: adjoint and tangent linear Euler flow around an airfoil. Future Gener. Comput. Syst. 21(8), 1345–1355 (2005)CrossRefGoogle Scholar
  12. 12.
    Giles, M.: On the use of Runge-Kutta time-marching and multigrid for the solution of steady adjoint equations. Tech. Rep. 00/10, Oxford (2000)Google Scholar
  13. 13.
    Griewank, A.: Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim. Methods Softw. 1, 35–54 (1992)CrossRefGoogle Scholar
  14. 14.
    Griewank, A., Walther, A.: Evaluating Derivatives, 2nd edn. Society for Industrial and Applied Mathematics, Philadephia, PA (2008)zbMATHGoogle Scholar
  15. 15.
    Grundmann, S., Tropea, C.: Experimental damping of boundary-layer oscillations using DBD plasma actuators. In: The Seventh International Symposium on Engineering Turbulence Modelling and Measurements, ETMM7. International Journal of Heat and Fluid Flow, vol. 30, no. 3, pp. 394–402 (2009)Google Scholar
  16. 16.
    Gu, T., Zuo, X., Liu, X., Li, P.: An improved parallel hybrid bi-conjugate gradient method suitable for distributed parallel computing. J. Comput. Appl. Math. 226(1), 55–65 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Gunzburger, M., Wood, H.G., III: Perspectives in flow control and optimization. Appl. Mech. Rev. 56(6), 57–62 (2003)CrossRefGoogle Scholar
  18. 18.
    Hess, W., Ulbrich, S.: An inexact ℓ1 penalty SQP algorithm for PDE constrained optimization with an application to shape optimization in linear elasticity. Optim. Methods Softw (2012). doi: 10.1080/10556788.2011.651082 Google Scholar
  19. 19.
    Hinze, M.: Control of weakly conductive fluids by near wall Lorentz forces. GAMM-Mitteilungen 30(1), 149–158 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical modelling, vol. 23. Springer, Dordrecht, NL (2009)Google Scholar
  21. 21.
    Jones, W., Launder, B.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15, 301–314 (1972)CrossRefGoogle Scholar
  22. 22.
    Kretz, F.: Auslegung, Konstruktion und Erprobung einer Druckgradienten-Messstecke. Diplomarbeit, Technische Universität Darmstadt (2006)Google Scholar
  23. 23.
    Nadarajah, S., Jameson, A.: Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint methods. AIAA J. 45(7), 1478 (2007)CrossRefGoogle Scholar
  24. 24.
    Özkaya, E., Gauger, N.: An efficient one-shot algorithm for aerodynamic shape design. New Results in Numerical and Experimental Fluid Mechanics VII, pp. 35–42 (2010)Google Scholar
  25. 25.
    Quarteroni, A., Valli, A.: Domain Decomposition Methods for Partial Differential Equations. Clarendon Press (1999)Google Scholar
  26. 26.
    ur Rehman, M., Vuik, C., Segal, G.: Preconditioners for the steady incompressible Navier-Stokes problem. Int. J. Appl. Math. 38, 223–232 (2008)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Saad, Y., Schultz, M.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7(3), 856–869 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Schlenkrich, S., Walther, A., Gauger, N., Heinrich, R.: Differentiating fixed point iterations with ADOL-C: gradient calculation for fluid dynamics. In: Bock, H.G., Kostina, E., Phu, H., Rannacher, R. (eds.) Modeling, Simulation and Optimization of Complex Processes – Proceedings of 3rd HPSC 2006, pp. 499–508 (2008)Google Scholar
  29. 29.
    Segar, M.K.: A SLAP for the Masses, pp. 135–155. John Wiley & Sons, Inc., New York, NY, USA (1989)Google Scholar
  30. 30.
    Smagorinsky, J.: General circulation experiments with the primitive equation. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  31. 31.
    Ulbrich, M., Ulbrich, S.: Automatic differentiation: a structure-exploiting forward mode with almost optimal complexity for Kantorovič trees. Applied Math Parallel Comput, pp. 327–357 (1996)Google Scholar
  32. 32.
    Walther, A.: Program reversal schedules for single- and multi-processor machines. Ph.D. thesis, Institute of Scientific Computing, Technical University Dresden, Germany (1999)Google Scholar
  33. 33.
    Wilcox, D.C.: Turbulence Modeling for CFD. DCW Industries (1994)Google Scholar
  34. 34.
    Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids 4, 1510–1520 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Zymaris, A., Papadimitriou, D., Giannakoglou, K., Othmer, C.: Continuous adjoint approach to the Spalart-Allmaras turbulence model for incompressible flows. Comput. Fluids 38(8), 1528–1538 (2009)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations