Advertisement

Flow, Turbulence and Combustion

, Volume 90, Issue 4, pp 709–722 | Cite as

Study of Near Wall Coherent Flow Structures on Dimpled Surfaces Using Unsteady Pressure Measurements

  • V. Voskoboinick
  • N. Kornev
  • J. Turnow
Article

Abstract

Unsteady pressure measurements have been performed inside a spherical dimple in a narrow channel for turbulent flow at Re D  = 40,000 with the aim to study coherent vortex structures and to get a deep insight into flow physics. Results confirm the formation of asymmetric coherent vortex structures switching between two extreme positions. Analysis of the pressure temporal distributions and correlation functions shows the presence of the anti-phase motion inside the dimple. Typical power laws of the pressure fluctuation energy spectrum ω  − 1 and ω  − 7/3 are reproduced.

Keywords

Dimples Vortex structures Pressure measurements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chyu, M.K., Yu, Y., Ding, H., Downs, J.P., Soechting, F.O.: Concavity enhanced heat transfer in an internal cooling passage. ASME No. 97-GT-437 (1997)Google Scholar
  2. 2.
    Elyyan, M.A., Rozatia, A., Tafti, D.K.: Investigation of dimpled fins for heat transfer enhancement in compact heat exchangers. Int. J. Heat Mass Transf. 51(11–12), 2950–2966 (2007)Google Scholar
  3. 3.
    Gravante, S.P., Naguib, A.M., Wark, C.E., Nagib, H.M.: Characterization of the pressure fluctuations under a fully developed turbulent boundary layer. AIAA J. 36(10), 1808–1816 (1998)CrossRefGoogle Scholar
  4. 4.
    Isaev, S.A., Leont’ev, A.I., Baranov, P.A., Pyshnyi, I.A.: Numerical analysis of the influence of the depth of a spherical hole on a plane wall on turbulent heat transfer. J. Eng. Phys. Thermophys. 76, 52–59 (2003)Google Scholar
  5. 5.
    Isaev, S.A., Kornev, N.V., Leontiev, A.I., Hassel, E.: Influence of the Reynolds number and the spherical dimple depth on turbulent heat transfer and hydraulic loss in a narrow channel. Int. J. Heat Mass Transf. 53(1–3), 178–197 (2010)zbMATHCrossRefGoogle Scholar
  6. 6.
    Jovanovic, J., Frohnapfel, B., Delgado, A.: Viscous drag reduction with surface embedded grooves. Notes Numer. Fluid Mech. Multidiscip. Des. 110, 191–197 (2010)CrossRefGoogle Scholar
  7. 7.
    Kornev, N., Turnow, J., Hassel, E., Isaev, S., Wurm, F.: Fluid Mechanics and heat transfer in a channel with spherical and oval dimples. Notes Numer. Fluid Mech. Multidiscip. Des. 110, 231–237 (2010)CrossRefGoogle Scholar
  8. 8.
    Ligrani, P.M., Oliveira, M.M., Blaskovich, T.: Comparison of heat transfer augmentation techniques. AIAA J. 41(3), 337–362 (2003)CrossRefGoogle Scholar
  9. 9.
    Schewe, G.: On the structure and resolution of wall pressure fluctuations associated with turbulent boundary layer flow. J. Fluid Mech. 134, 311–328 (1983)CrossRefGoogle Scholar
  10. 10.
    Terekhov, V.I., Kalinina, S.V., Mshvidobadse, Y.M.: Heat transfer coefficient and aerodynamic resistance on a surface with a single dimple. Enhanc. Heat Transf. 4, 131–145 (1997)Google Scholar
  11. 11.
    Turnow, J., Kornev, N., Isaev, S., Hassel, E.: Vortex mechanism of heat transfer enhancement in a channel with spherical and oval dimples. Heat Mass Transf. 47(3), 301–313 (2011)CrossRefGoogle Scholar
  12. 12.
    Willmarth, W.: Pressure fluctuations beneath turbulent boundary layers. Annu. Rev. Fluid Mech. 7, 13–37 (1975)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Institute of HydromechanicsAcademy of Science of UkraineKyivUkraine
  2. 2.Department of Mechanical Engineering and Marine TechnologyInstitute of Modeling and SimulationRostockGermany

Personalised recommendations