Advertisement

Flow, Turbulence and Combustion

, Volume 90, Issue 1, pp 95–119 | Cite as

Near Field Round Jet Flow Downstream from an Abrupt Contraction Nozzle with Tube Extension

  • X. Grandchamp
  • A. Van Hirtum
Article

Abstract

Round air jet development downstream from an abrupt contraction coupled to a uniform circular tube extension with length to diameter ratio L/D = 1.2 and L/D = 53.2 is studied experimentally. Smoke visualisation and systematic hot film velocity measurements are performed for low to moderate Reynolds numbers 1130 < Re b  < 11320. Mean and turbulent velocity profiles are quantified at the tube exit and along the centerline from the tube exit down to 20 times the diameter D. Flow development is seen to be determined by the underlying jet structure at the tube exit which depends on Reynolds number, initial velocity statistics at the tube exit and the presence/absence of coherent structures. It is shown that the tube extension ratio L/D as well as the sharp edged abrupt contraction influence the initial jet structure at the tube exit. For both L/D ratios, the presence of the abrupt contraction results in transitional jet flow in the range 2000 < Re b  < 4000 and in flow features associated with forced jets and high Reynolds numbers Re b  > 104. The tube extension ratio L/D downstream from the abrupt contraction determines the shear layer roll up so that for L/D = 1.2 flow visualisation suggests the occurrence of toroidal vortices for Re b  < 4000 whereas helical vortices are associated with the transitional regime for L/D = 53.2. Found flow features are compared to features reported in literature for smooth contraction nozzles and long pipe flow.

Keywords

Axisymmetrical jet Anemometry Initial conditions Jet forcing Moderate Reynolds numbers Transition regime Vortex dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Neill, P., Soria, J., Honnery, D.: The stability of low Reynolds number round jets. Exp. Fluids 36, 473–483 (2004)CrossRefGoogle Scholar
  2. 2.
    Abdel-Rahman, A., Al-Fahed, S., Chakroun, W.: The near-field characteristics of circular jets at low Reynolds numbers. Mech. Res. Commun. 23, 313–324 (1996)CrossRefGoogle Scholar
  3. 3.
    Boguslawski, L., Popiel, C.O.: Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90, 531–539 (1979)CrossRefGoogle Scholar
  4. 4.
    Burattini, P., Antonia, R.A., Rajagopalan, S., Stephens, M.: Effect of initial conditions on the near-field development of a round jet. Exp. Fluids 37, 56–64 (2004)CrossRefGoogle Scholar
  5. 5.
    Burattini, P., Djenidi, L.: Velocity and passive scalar characteristics round jet with grids at the nozzle exit. Flow Turbulence Combust. 72, 199–218 (2004)CrossRefGoogle Scholar
  6. 6.
    Cohen, J., Wygnanski, I.: The evolution of instabilities in the axisymmetric jet. part 1. The linear growth of disturbances near the nozzle. J. Fluid Mech. 176, 191–219 (1987)CrossRefGoogle Scholar
  7. 7.
    Crow, S.C., Champagne, F.H.: Orderly structure in jet turbulence. J. Fluid Mech. 48, 547–591 (1971)CrossRefGoogle Scholar
  8. 8.
    Dimotakis, P.E., Miake-Lye, R.C., Papantoniou, D.A.: Structure and dynamics of round turbulent jets. Phys. Fluids 23, 3185–3192 (1983)CrossRefGoogle Scholar
  9. 9.
    Drubka, R., Reisenthel, P., Nagib, H.: The dynamics of low initial disturbance turbulent jets. Phys. Fluids A 1, 1723–1735 (1989)CrossRefGoogle Scholar
  10. 10.
    Eckmann, J.P.: Roads to turbulence in dissipative dynamical systems. Rev. Mod. Phys. 53, 643–654 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ferdman, E., Otugen, M., Kim, S.: Effect of initial velocity profiles on round jets. J. Propuls. Power 16, 676–686 (2000)CrossRefGoogle Scholar
  12. 12.
    George, W.K.: Recent advances in Turbulence, chapter the self-preservation of turbulent flows and its relation to initial conditions and coherent structures, pp. 39–73. Hemisphere, New York (1989)Google Scholar
  13. 13.
    Grandchamp, X.: Modélisation Physique des Écoulements Turbulents Appliquée aux voies Aériennes Supérieures Chez l’humain. PhD thesis, Grenoble University (2009)Google Scholar
  14. 14.
    Grandchamp, X., Van Hirtum, A., Pelorson, X.: Hot film/wire calibration for low to moderate flow velocities. Meas. Sci. Technol. 21, 115402 (2010)CrossRefGoogle Scholar
  15. 15.
    Grinstein, F.F., Glauser, M.N., George, W.K.: Fluid vortices. In: chapter Vorticity in jets, pp. 65–94. Kluwer Academic Publisher, New York (1995)Google Scholar
  16. 16.
    Harsha, P.T.: Free turbulent mixing: a critical evaluation of theory and experiment. Technical report (1971)Google Scholar
  17. 17.
    Ho, C., Huerre, P.: Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365–424 (1984)CrossRefGoogle Scholar
  18. 18.
    Hussain, A., Zedan, M.: Effects of the initial condition on the axisymmetric free shear layer: effects of the initial momentum thickness. Phys. Fluids 20, 1100–1112 (1978)CrossRefGoogle Scholar
  19. 19.
    Hussein, H., Capp, S., George, W.: Velocity measurements in a high Reynolds number momentum conserving axisymmetric turbulent jet. J. Fluid Mech. 258, 31–75 (1994)CrossRefGoogle Scholar
  20. 20.
    Iyogun, C.O., Birouk, M.: Effect of sudden expansion on entrainment and spreading rates of a jet issuing from asymmetric nozzles. Flow Turbul. Combust. 82, 287–315 (2009)zbMATHCrossRefGoogle Scholar
  21. 21.
    Kwon, S.J., Seo, I.W.: Reynolds number effects on the behavior of a non-buoyant round jet. Exp. Fluids 38, 801–812 (2005)CrossRefGoogle Scholar
  22. 22.
    Lee, S.S., Liu, J.T.C.: Multiple lare-scale coherent mode interactions in a developing round jet. J. Fluid Mech. 248, 383–401 (1993)zbMATHCrossRefGoogle Scholar
  23. 23.
    Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992)CrossRefGoogle Scholar
  24. 24.
    Malmström, T.G., Kirkpatrick, A.T., Christensen, B., Knappmiller, K.D.: Centreline velocity decay measurements in low-velocity axisymmetric jets. J. Fluid Mech. 246, 363–377 (1997)CrossRefGoogle Scholar
  25. 25.
    Mi, J., Kalt, P., Nathan, G., Wong, C.: PIV measurements of a turbulent jet issuing from round sharp-edged plate. Exp. Fluids 42(2), 625–637 (2007)CrossRefGoogle Scholar
  26. 26.
    Mi, J., Nathan, G., Luxton, R.: Centreline mixing characteristics of jets from nine differently shaped nozzles. Exp. Fluids 28(2), 93–94 (2000)CrossRefGoogle Scholar
  27. 27.
    Mi, J., Nobes, D., Nathan, G.: Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91–125 (2001)zbMATHGoogle Scholar
  28. 28.
    Michalke, A. On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521–544 (1965)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Michalke, A., Hermann, G.: On the inviscid instability of a circular jet with external flow. J. Fluid Mech. 114, 343–359 (1982)zbMATHCrossRefGoogle Scholar
  30. 30.
    Mikhail, M.N.: Optimum design of wind tunnel contractions. AIAA J. 17, 471–477 (1979)CrossRefGoogle Scholar
  31. 31.
    Morel, T.: Comprehensive design of axisymmetric wind tunnel contractions. J. Fluid Eng. 97, 225–233 (1975)CrossRefGoogle Scholar
  32. 32.
    Panchapakesan, N., Lumley, J.: Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197–224 (1993)CrossRefGoogle Scholar
  33. 33.
    Pitts, W.: Reynolds number effects on the mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11, 135–141 (1991)Google Scholar
  34. 34.
    Quinn, W.: Upstream nozzle shaping effects on near field flow in round turbulent free jets. Eur. J. Mech. B, Fluids 25, 279–301 (2006)zbMATHCrossRefGoogle Scholar
  35. 35.
    Romano, G., Antonia, R.A.: Longitudinal and transverse structure functions in a turbulent round jet: effect of initial conditions and Reynolds number. J. Fluid Mech. 436, 231–248 (2001)zbMATHCrossRefGoogle Scholar
  36. 36.
    Russ, S., Strykowski, P.: Turbulent structure and entrainment in heated jets: The effect of initial conditions. Phys. Fluids 5, 3216–3225 (1993)CrossRefGoogle Scholar
  37. 37.
    Saffman, P.G.: Vortex dynamics. CambridgeMonographs on Mechanics and AppliedMathematics, pp. 1–311. New York (2001)Google Scholar
  38. 38.
    Sautet, J., Stepowski, D.: Dynamic behavior of variable-density, turbulent jets in their near development fields. Phys. Fluids 7(2), 2796–2806 (1995)CrossRefGoogle Scholar
  39. 39.
    Schlichting, H., Gersten, K.: Boundary Layer Theory. Springer Verlag, Berlin (2000)zbMATHGoogle Scholar
  40. 40.
    Todde, V., Spazzini, P.G., Sandberg, M.: Experimental analysis of low-Reynolds number free jets: evolution along the jet centerline and Reynolds number effects. Exp. Fluids 47, 279–294 (2009)CrossRefGoogle Scholar
  41. 41.
    Van Hirtum, A., Grandchamp, X., Pelorson, X.: Moderate Reynolds number axisymmetric jet development downstream an extended conical diffuser: influence of extension length. Eur. J. Mech. B, Fluids 28, 753–760 (2009)zbMATHCrossRefGoogle Scholar
  42. 42.
    Winant, C.D., Browand, F.K.: Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237–255 (1974)CrossRefGoogle Scholar
  43. 43.
    Wygnanski, I., Sokolov, M., Friedman, D.: On transition in a pipe: Part 2. The equilibrium puff. J. Fluid Mech. 69, 283–304 (1975)CrossRefGoogle Scholar
  44. 44.
    Wygnanski, I.J., Champagne, F.H.: On transition in a pipe: Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281–335 (1973)CrossRefGoogle Scholar
  45. 45.
    Xu, G., Antonia, R.A.: Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677–683 (2002)Google Scholar
  46. 46.
    Zaouali, Y., Filali, T., Ben, H., Aissia, Jay, J.: Flow structure generated from an axisymmetric natural air jet at a moderate reynolds number. Fluid Dyn. Res. 43, 1–13 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.GIPSA-lab, UMR CNRS 5216Grenoble UniversityGrenobleFrance

Personalised recommendations