Advertisement

Flow, Turbulence and Combustion

, Volume 90, Issue 2, pp 401–418 | Cite as

Transition from Countergradient to Gradient Scalar Transport in Developing Premixed Turbulent Flames

  • A. N. Lipatnikov
  • V. A. Sabelnikov
Article

Abstract

A simple model of turbulent scalar flux developed recently by the present authors is applied to determine the direction of the flux in a statistically planar one-dimensional premixed flame that does not affect turbulence and has self-similar mean structure. Results obtained in the case of statistically stationary turbulence indicate that transition from countergradient to gradient turbulent scalar transport may occur during flame development, as the peak mean rate of product creation moves to the trailing edge of the flame brush. In the case of decaying turbulence, the opposite transition (from gradient to countergradient transport) was simulated in line with available DNS data. In both cases, transition instant depends strongly on turbulence and mixture characteristics. In particular, countergradient transport is suppressed by an increase in the rms turbulent velocity and by a decrease in the laminar flame speed or density ratio, in line with available experimental and DNS data. The obtained results lend qualitative support to the model of turbulent scalar flux addressed in the present work.

Keywords

Premixed turbulent combustion Countergradient scalar transport Modeling 

Mathematics Subject Classifications (2010)

80A25 76F25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prudnikov, A.G.: Burning of homogeneous fuel-air mixtures in a turbulent flow. In: Raushenbakh, B.V. (ed.) Physical Principles of the Working Process in Combustion Chambers of Jet Engines, pp. 244–336. Clearing House for Federal Scientific & Technical Information, Springfield (1967)Google Scholar
  2. 2.
    Clavin, P., Williams, F.A.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 589–604 (1979)zbMATHCrossRefGoogle Scholar
  3. 3.
    Libby, P.A., Bray, K.N.C.: Countergradient diffusion in premixed turbulent flames. AIAA J. 19, 205–213 (1981)CrossRefGoogle Scholar
  4. 4.
    Moss, J.B.: Simultaneous measurements of concentration and velocity in an open premixed turbulent flame. Combust. Sci. Technol. 22, 119–129 (1980)CrossRefGoogle Scholar
  5. 5.
    Tanaka, H., Yanagi, T.: Velocity-temperature correlation in premixed flame. Proc. Combust. Inst. 18, 1031–1039 (1981)Google Scholar
  6. 6.
    Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)CrossRefGoogle Scholar
  7. 7.
    Kalt, P.A.M., Frank, J.H., Bilger, R.W.: Laser imaging of conditional velocities in premixed propane-air flames by simultaneous OH PLIF and PIV. Proc. Combust. Inst. 27, 751–758 (1998)Google Scholar
  8. 8.
    Frank, J.H., Kalt, P.A.M., Bilger, R.W.: Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combust. Flame 116, 220–232 (1999)CrossRefGoogle Scholar
  9. 9.
    Kalt, P.A.M., Chen, Y.C., Bilger, R.W.: Experimental investigation of turbulent scalar flux in premixed stagnation-type flames. Combust. Flame 129, 401–415 (2002)CrossRefGoogle Scholar
  10. 10.
    Troiani, G., Marrocco, M., Giammartini, S., Casciola, C.M.: Counter-gradient transport in the combustion of a premixed CH4/air annular jet by combined PIV/OH-LIF. Combust. Flame 156, 608–620 (2009)CrossRefGoogle Scholar
  11. 11.
    Veynante, D., Piana, J., Duclos, J.M., Martel, C.: Experimental analysis of flame surface density models for premixed turbulent combustion. Proc. Combust. Inst. 26, 413–420 (1996)Google Scholar
  12. 12.
    Most, D., Dinkelacker, F., Leipertz, A.: Direct determination of the turbulent flux by simultaneous application of filtered Rayleigh scattering thermometry and particle image velocimetry. Proc. Combust. Inst. 29, 2669–2677 (2002)CrossRefGoogle Scholar
  13. 13.
    Pfadler, S., Leipertz, A., Dinkelacker, F., Wäsle, J., Winkler, A., Sattelmayer, T.: Two-dimensional direct measurement of the turbulent flux in turbulent premixed swirl flames. Proc. Combust. Inst. 31, 1337–1344 (2007)CrossRefGoogle Scholar
  14. 14.
    Bray, K.N.C.: Turbulent transport in flames. Proc. R. Soc. Lond. A 451, 231–256 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)zbMATHGoogle Scholar
  16. 16.
    Veynante, D., Poinsot, T.: Effects of pressure gradients on turbulent premixed flames. J. Fluid Mech. 353, 83–114 (1997)zbMATHCrossRefGoogle Scholar
  17. 17.
    Swaminathan, N., Bilger, R.W., Ruetsch, G.R.: Interdependence of the instantaneous flame front structure and the overall scalar flux in turbulent premixed flames. Combust. Sci. Technol. 128, 73–97 (1997)CrossRefGoogle Scholar
  18. 18.
    Louch, D.S., Bray, K.N.C.: Vorticity and scalar transport in premixed turbulent combustion. Proc. Combust. Inst. 27, 801–810 (1998)Google Scholar
  19. 19.
    Chen, Y.C., Bilger, R.: Simultaneous 2–D imaging measurements of reaction progress variable and OH radical concentration in turbulent premixed flames: instantaneous flame-front structure. Combust. Sci. Technol. 167, 187–222 (2001)CrossRefGoogle Scholar
  20. 20.
    Zimont, V.L., Biagioli, F., Syed, K.: Modelling turbulent premixed combustion in the intermediate steady propagation regime. Prog. Comput. Fluid Dyn. 1, 14–28 (2001)Google Scholar
  21. 21.
    Lipatnikov, A.N., Chomiak, J.: Developing premixed turbulent flames: part II. Pressure-driven transport and turbulent diffusion. Combust. Sci. Technol. 165, 175–195 (2001)CrossRefGoogle Scholar
  22. 22.
    Zimont, V.L., Biagioli, F.: Gradient, counter-gradient transport and their transition in turbulent premixed flames. Combust. Theor. Model. 6, 79–101 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Biagioli, F., Zimont, V.L.: Gasdynamics modelling of counter-gradient transport in open and impinging turbulent premixed flames. Proc. Combust. Inst. 29, 2087–2095 (2002)CrossRefGoogle Scholar
  24. 24.
    Lipatnikov, A.N., Chomiak, J.: Self-similarly developing, premixed, turbulent flames: a theoretical study. Phys. Fluids 17, 065105 (2005)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Zimont, V.L., Battaglia, V.: Joint RANS/LES approach to premixed flame modelling in the context of the TFC combustion model. Flow Turbulence Combust. 77, 305–331 (2006)zbMATHCrossRefGoogle Scholar
  26. 26.
    Chakraborty, N., Cant, R.S.: Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 21, 035110 (2009)CrossRefGoogle Scholar
  27. 27.
    Lipatnikov, A.N.: Transient behavior of turbulent scalar transport in premixed flames. Flow Turbulence Combust. 86, 609–637 (2011)zbMATHCrossRefGoogle Scholar
  28. 28.
    Trouvé, A., Poinsot, T.: Evolution equation for flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28, 1–74 (2002)CrossRefGoogle Scholar
  30. 30.
    Lipatnikov, A.N.: Premixed turbulent flame as a developing front with a self-similar structure. In: Jiang, S.Z. (ed.) Focus on Combustion Research, pp. 89–141. Nova, New York (2006)Google Scholar
  31. 31.
    Lipatnikov, A.N.: Testing premixed turbulent combustion models by studying flame dynamics. Int. J. Spray Combust. Dynamics 1, 39–66 (2009)CrossRefGoogle Scholar
  32. 32.
    Sabelnikov, V.A., Lipatnikov, A.N.: A simple model for evaluating conditioned velocities in premixed turbulent flames. Combust. Sci. Technol. 183, 588–613 (2011)CrossRefGoogle Scholar
  33. 33.
    Sabelnikov, V.A., Lipatnikov, A.N.: Towards an extension of TFC model of premixed turbulent combustion. Flow Turbulence Combust. (2012). doi: 10.1007/s10494-012-9409-9 Google Scholar
  34. 34.
    Bray, K.N.C, Moss, J.B.: A unified statistical model for the premixed turbulent flame. Acta Astronaut. 4, 291–319 (1977)CrossRefGoogle Scholar
  35. 35.
    Driscoll, J.F.: Turbulent premixed combustion: flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci. 34, 91–134 (2008)CrossRefGoogle Scholar
  36. 36.
    Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.: Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478–488 (2004)CrossRefGoogle Scholar
  37. 37.
    Lipatnikov, A.N.: Conditionally averaged balance equations for modeling premixed turbulent combustion in flamelet regime. Combust. Flame 152, 529–547 (2008)CrossRefGoogle Scholar
  38. 38.
    Lipatnikov, A.N., Sabelnikov, V.A.: Exact solutions to reaction-diffusion equation and the direction of turbulent scalar flux in a premixed turbulent flame and its leading edge. In: Hanjalic, K., Nagano, Y., Borello, D., and Jakirlic, S. (eds.) THMT 12 Proceedings of the Seventh International Symposium Turbulence, Heat and Mass Transfer 7, University of Palermo, Italy, September 24–27, 2012, International Centre for Heat and Mass Transfer, CD, 2012, 13pp.Google Scholar
  39. 39.
    Lipatnikov, A.N., Sabelnikov, V.A.: Scalar flux at the leading edge of premixed turbulent flame brush (in preparation)Google Scholar
  40. 40.
    Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)CrossRefGoogle Scholar
  41. 41.
    Lipatnikov, A.N.: A test of conditioned balance equation approach. Proc. Combust. Inst. 33, 1497–1504 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Applied MechanicsChalmers University of TechnologyGothenburgSweden
  2. 2.ONERA - The French Aerospace Lab.PalaiseauFrance

Personalised recommendations