Advertisement

Flow, Turbulence and Combustion

, Volume 90, Issue 4, pp 741–761 | Cite as

Development of a Miniaturized Energy Converter Without Moving Parts

  • Thomas Kania
  • Boris Schilder
  • Thilo Kissel
  • Peter Stephan
  • Steffen Hardt
  • Andreas DreizlerEmail author
Article

Abstract

New developments in portable electrical and mechanical devices have created demand for increasing amounts of energy and thus new ways of supplying energy. The high energy density of hydrocarbon fuels are a possible way to solve this issue. This paper deals with the development of an adapted thermodynamic concept for a micro energy converter based on the thermoelectric effect. Developing a PowerMEMS device that does not contain any moving parts is the main design feature. In the proposed concept liquid hydrocarbon fuel, such as methanol, is evaporated in a micro evaporator, mixed with air, and combusted in a micro combustion chamber. The combustion process is assisted by catalytically coated microfibers. Electrical power can be generated by a thermoelectric generator, which is located between the hot combustion zone and the cold micro evaporator. This arrangement leads to large temperature differences between hot and cold junctions, which is necessary for efficient thermoelectric energy conversion and hence power generation. For a more detailed investigation of thermal boundary conditions and interior thermal management, in-situ temperature measurements of the combustor walls are performed using thermographic phosphors.

Keywords

Micro energy converter Near wall combustion  Micro combustion chamber Micro evaporator PowerMems Catalytic assisted combustion Thermoelectric energy conversion Thermographic phosphors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahn, J., Eastwood, C., Sitzki, L., Ronney, P.: Gas-phase and catalytic combustion in heat-recirculating burners. Proc. Combust. Inst. 30, 2463–2472 (2005)CrossRefGoogle Scholar
  2. 2.
    Allison, S., Gillies, G.: Remote thermometry with thermographic phosphors: instrumentation and applications. Rev. Sci. Instrum. 68(7), 2615–2650 (1997)CrossRefGoogle Scholar
  3. 3.
    Brübach, J., Dreizler, A., Janicka, J.: Gas compositional and pressure effects on thermographic phosphor thermometry. Meas. Sci. Technol. 18(3), 764–770 (2007)CrossRefGoogle Scholar
  4. 4.
    Brübach, J., Feist, J., Dreizler, A.: Characterization of manganese-activated magnesium fluorogermanate with regards to thermographic phosphor thermometry. Meas. Sci. Technol. 19(2), 025602 (2008)CrossRefGoogle Scholar
  5. 5.
    Brübach, J., Janicka, J., Dreizler, A.: An algorithm for the characterisation of multi-exponential decay curves. Opt. Laser. Eng. 47(1), 75–79 (2009)CrossRefGoogle Scholar
  6. 6.
    Dunn-Rankin, D., Weinberg, F.: Using large electric fields to control transport in microgravity. Ann. N. Y. Acad. Sci. 1077, 570–584 (2006)CrossRefGoogle Scholar
  7. 7.
    Epstein, A.: Millimeter-scale, micro-electro-mechanical systems gas turbine engines. J. Eng. Gas Turbul. Power 126(2), 205–226 (2004)CrossRefGoogle Scholar
  8. 8.
    Federici, J., Norton, D., Brüggemann, T., Voit, K., Wetzel, E., Vlachos, D.: Catalytic microcombustors with integrated thermoelectric elements for portable power production. J. Power Sources 161(2), 1469–1478 (2006)CrossRefGoogle Scholar
  9. 9.
    Fernandez-Pello, A.: Micropower generation using combustion: issues and approaches. Proc. Combust. Inst. 29, 883–899 (2003)CrossRefGoogle Scholar
  10. 10.
    Fernandez-Pello, A., Fu, K., Knobloch, A., Martinez, F., Walther, D., Pisano, A., Liepmann, D., Maruta, K., Miyasaka, K.: Design and experimental results of small-scale rotary engine. In: Proc. 2001 Int. Mechanical Engineering Congr. and Expo. (IMECE). ASME Publication IMECE/MEMS-23924 (2001)Google Scholar
  11. 11.
    Gomez, A., Berry, J., Roychoudhury, S., Coriton, B., Huth, J.: From jet fuel to electric power using a mesoscale, efficient stirling cycle. Proc. Combust. Inst. 31, 3251–3259 (2007)CrossRefGoogle Scholar
  12. 12.
  13. 13.
    Isomura, K., Murayama, M., Teramoto, S., Hikichi, K., Endo, Y., Togo, S., Tanaka, S.: Experimental verification of the feasibility of a 100 W class micro-scale gas turbine at an impeller diameter of 10 Mm. J. Micromech. Microeng. 16(9), S254–S261 (2006)CrossRefGoogle Scholar
  14. 14.
    Isomura, K., Tanaka, S., Togo, S., Kanebako, H., Murayama, M., Saji, N., Sato, F., Esashi, M.: Development of micromachine gas turbine for portable power generation. JSME Int. J. Ser. B (Jpn. Soc. Mech. Eng.) 47(3), 459–464 (2004)CrossRefGoogle Scholar
  15. 15.
    Kania, T.: Entwicklung und integration einer mikrobrennkammer in einen mikroenergiewandler. Technische Universität, Darmtadt. http://tuprints.ulb.tu-darmstadt.de/2166/ (2010)
  16. 16.
    Kania, T., Dreizler, A.: Investigation of a micro combustion chamber for a thermoelectric energy converter. In: European Combustion Meeting (2009)Google Scholar
  17. 17.
    Kania, T., Dreizler, A., Janicka, J., Schilder, B., Hardt, S., Stephan, P.: Conceptual study of a micro energy converter using thermoelectric materials. In: The Sixth International Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (2006)Google Scholar
  18. 18.
    Kohse-Höinghaus, K., Jeffries, J.B. (eds.): Applied Combustion Diagnostics. Taylor & Francis, New York (2002)Google Scholar
  19. 19.
    Lewis, B., Von Elbe, G.: Combustion, Flames and Explosions of Gases. Academic Press, New York (1951)Google Scholar
  20. 20.
    Maruta, K., Takeda, K., Sitzki, L., Borer, K., Ronney, P., Wussow, S., Deutschmann, O.: Catalytic combustion in microchannel for mems power generation. In: The Third Asia-Pacific Conference on Combustion (2001)Google Scholar
  21. 21.
    Mehra, A., Zhang, X., Ayon, A., Waitz, I., Schmidt, M., Spadaccini, C.: A six-wafer combustion system for a silicon micro gas turbine engine. J. Microelectromech. Syst. 9(4), 517–527 (2000)CrossRefGoogle Scholar
  22. 22.
    Peterson, R.: The maximum power operating point for a combustion-driven thermoelectric converter with heat recirculation. J. Eng. Gas Turbul. Power 129(4), 1106–1113 (2007)CrossRefGoogle Scholar
  23. 23.
    Piechna, J.: Feasibility study of the wave disk micro-engine operation. J. Micromech. Microeng. 16(9), S270–S281 (2006)CrossRefGoogle Scholar
  24. 24.
    Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M., Chen, G., Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320(5876), 634–638 (2008)CrossRefGoogle Scholar
  25. 25.
    Rickard, M., Dunn-Rankin, D., Weinberg, F., Carleton, F.: Maximizing ion-driven gas flows. J. Electrostat. 64(6), 368–376 (2006)CrossRefGoogle Scholar
  26. 26.
    Rowe, D.: CRC The Handbook of Thermoelectrics. CRC Press, Boca Raton (1995)CrossRefGoogle Scholar
  27. 27.
    Schaevitz, S., Franz, A., Jensen, K., Schmidt, M.: A combustion-based mems thermoelectric power generator. In: Transducers ’01: Eurosensors XV, Digest of Technical Papers, vols. 1 and 2, pp. 30–33 1807 (2001)Google Scholar
  28. 28.
    Schilder, B., Schuch, W., Stephan, P.: A capillary pumped two loop system for cooling of electronic devices. In: Seventh International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers: From Microscale Phenomena to Industrial Applications (2009)Google Scholar
  29. 29.
    Schilder, B., Yu, S., Kasagi, N., Hardt, S., Stephan, P.: Local heat transfer measurement in a micro glass tube. In: Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels (2008)Google Scholar
  30. 30.
    Schilder, B., Zorbach, I., Hardt, S., Stephan, P., Wondra, F., KlotzbÃ\({\frac{1}{4}}\)cher, T.: Experimental investigation of fuel evaporation on microstructured surfaces for microcombustion. In: Sixth International Conference on Enhanced, Compact and Ultra-Compact Heat Exchangers (2007)Google Scholar
  31. 31.
    Seebeck, T.: Magnetische polarisation der metalle und erze durch temperatur-differenz. In: Abhandlungen der Deutschen Akademie der Wissenschaften, pp. 289–346 (1822–1823)Google Scholar
  32. 32.
    Shan, X., Wang, Z., Jin, Y., Wu, M., Hua, J., Wong, C., Maeda, R.: Studies on a micro combustor for gas turbine engines. J. Micromech. Microeng. 15(9), S215–S221 (2005)CrossRefGoogle Scholar
  33. 33.
    Sitzki, L., Borer, K., Schuster, E., Ronney, P.: Combustion in microscale heat-recirculating burners. In: The Third Asia-Pacific Conference on Combustion (2001)Google Scholar
  34. 34.
    Snyder, G., Toberer, E.: Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008)CrossRefGoogle Scholar
  35. 35.
    Spadaccini, C.: Combustion systems for power-mems applications. Ph.D. thesis, Massachusetts Institute of Technology (2004)Google Scholar
  36. 36.
    Spadaccini, C., Zhang, X., Cadou, C., Miki, N., Waitz, I.: Preliminary development of a hydrocarbon-fueled catalytic micro-combustor. Sens. Actuators A 103(1–2), 219–224 (2003)Google Scholar
  37. 37.
    Tritt, T., Subramanian, M.: Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRS Bull. 31(3), 188–194 (2006)CrossRefGoogle Scholar
  38. 38.
    Vican, J., Gajdeczko, B., Dryer, F., Milius, D., Aksay, I., Yetter, R.: Development of a microreactor as a thermal source for microelectromechanical systems power generation. Proc. Combust. Inst. 29, 909–916 (2003)CrossRefGoogle Scholar
  39. 39.
    Waitz, I., Gauba, G., Tzeng, Y.: Combustors for micro-gas turbine engines. J. Fluids Eng. Trans. ASME 120(1), 109–117 (1998)CrossRefGoogle Scholar
  40. 40.
    VDI-Wärmeatlas, 10. bearbeitete und erweiterte Auflage. Springer, Berlin (2006)Google Scholar
  41. 41.
    Weinberg, F., Carleton, F., Dunn-Rankin, D.: Electric field-controlled mesoscale burners. Combust. Flame 152(1–2), 186–193 (2008)CrossRefGoogle Scholar
  42. 42.
    Weinberg, F., Carleton, F., Kara, D., Xavier, A., Dunn-Rankin, D., Rickard, M.: Inducing gas flow and swirl in tubes using ionic wind from corona discharges. Exp. Fluids 40(2), 231–237 (2006)CrossRefGoogle Scholar
  43. 43.
    Weinberg, F., Rowe, D., Min, G.: Novel high performance small-scale thermoelectric power generation employing regenerative combustion systems. J. Phys. D, Appl. Phys. 35(13), L61–L63 (2002)CrossRefGoogle Scholar
  44. 44.
    Wu, M., Hua, J., Kumar, K.: An improved micro-combustor design for micro gas turbine engine and numerical analysis. J. Micromech. Microeng. 15(10), 1817–1823 (2005)CrossRefGoogle Scholar
  45. 45.
    Yang, W., Chou, S., Shu, C., Li, Z., Xue, H.: Development of microthermophotovoltaic system. Appl. Phys. Lett. 81(27), 5255–5257 (2002)CrossRefGoogle Scholar
  46. 46.
    Yoshida, K., Tanaka, S., Tomonari, S., Satoh, D., Esashi, M.: High-energy density miniature thermoelectric generator using catalytic combustion. J. Microelectromech. Syst. 15(1), 195–203 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Thomas Kania
    • 1
  • Boris Schilder
    • 2
  • Thilo Kissel
    • 1
  • Peter Stephan
    • 2
  • Steffen Hardt
    • 3
  • Andreas Dreizler
    • 1
    Email author
  1. 1.Center of Smart Interfaces, Reaktive Strömungen und MesstechnikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Technische ThermodynamikTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Center of Smart Interfaces, Nano- und MikrofluidikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations