Advertisement

Flow, Turbulence and Combustion

, Volume 89, Issue 4, pp 491–518 | Cite as

Large-Eddy Simulation of the Flow Over a Circular Cylinder at Reynolds Number 3900 Using the OpenFOAM Toolbox

  • Dmitry A. Lysenko
  • Ivar S. Ertesvåg
  • Kjell Erik Rian
Article

Abstract

The flow over a circular cylinder at Reynolds number 3900 and Mach number 0.2 was predicted numerically using the technique of large-eddy simulation. The computations were carried out with an O-type curvilinear grid of size of 300 × 300 × 64. The numerical simulations were performed using a second-order finite-volume method with central-difference schemes for the approximation of convective terms. A conventional Smagorinsky and a dynamic k-equation eddy viscosity sub-grid scale models were applied. The integration time interval for data sampling was extended up to 150 vortex shedding periods for the purpose of obtaining a fully converged mean flow field. The present numerical results were found to be in good agreement with existing experimental data and previously obtained large-eddy simulation results. This gives an indication on the adequacy and accuracy of the selected large-eddy simulation technique implemented in the OpenFOAM toolbox.

Keywords

Large-eddy simulation Conventional Smagorinsky SGS model Dynamic k-equation SGS model  Finite-volume method Turbulent separated flow Circular cylinder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. J. Comput. Fluids. 35, 1126–1136 (2006)zbMATHCrossRefGoogle Scholar
  2. 2.
    Beaudan, P., Moin, P.: Numerical experiments on the flow past a circular cylinder at sub-critical Reynolds number. Technical Report TF-62, CTR Annual Research Briefs, NASA Ames/Stanford University (1994)Google Scholar
  3. 3.
    Breuer, M.: Large eddy simulation of the sub-critical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Methods Fluids 28, 1281–1302 (1998)zbMATHCrossRefGoogle Scholar
  4. 4.
    Cardell, G.S.: Flow past a circular cylinder with permeable splitter plate. Data taken from Mittal [29] (1993)Google Scholar
  5. 5.
    Chorin, A.: Numerical solution of Navier-Stokes equations. Math. Comput. 22, 745–762 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation particle image velocimetry study of the turbulent air wake. J. Fluid Mech. 569, 185–207 (2006)zbMATHCrossRefGoogle Scholar
  7. 7.
    Franke, J., Frank, W.: Large eddy simulation of the flow past a circular cylinder at Re = 3900. J. Wind Eng. Ind. Aerod. 90, 1191–1206 (2002)CrossRefGoogle Scholar
  8. 8.
    Fureby, C.: Towards the use of large eddy simulation in engineering. Prog. Aerosp. Sci. 44, 381–396 (2008)CrossRefGoogle Scholar
  9. 9.
    Fureby, C.: On subgrid scale modeling in large eddy simulations of compressible fluid flow. Phys. Fluids 8(5), 1301–1311 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Fureby, C., Tabor, G., Weller, H.G., Gosman, A.D.: A comparative study of subgrid scale models in homogeneous isotropic turbulence. Phys. Fluids 9(5), 1416–1429 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Garnier, E., Adams, N., Sagaut, P.: Large Eddy Simulation for Compressible Flows. Springer, New York (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)zbMATHCrossRefGoogle Scholar
  13. 13.
    Geurts, B.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards, Philadelphia (2004)Google Scholar
  14. 14.
    Hadjadj, A., Kudryavtsev, A.: Computation and flow visualization in high-speed aerodynamics. J. Turbul. 6(16), 33–81 (2005)MathSciNetGoogle Scholar
  15. 15.
    Hestens, M., Steifel, E.: Methods of conjugate gradients for solving systems of algebraic equations. J. Res. Natl. Bur. Stand 29, 409–436 (1952)CrossRefGoogle Scholar
  16. 16.
    Issa, R.: Solution of the implicitly discretized fluid flow equations by operator splitting. J. Comput. Phys. 62, 40–65 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Jacobs, D.: Preconditioned conjugate gradient methods for solving systems of algebraic equations. Tech. rep., Central Electricity Research Laboratories, Leatherhead, Surrey, England (1980)Google Scholar
  18. 18.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Kravchenko, A., Moin, P.: Numerical studies of flow over a circular cylinder at Re=3900. Phys. Fluids 12(2), 403–417 (2000)zbMATHCrossRefGoogle Scholar
  20. 20.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4(3), 633–635 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lourenco, L.M., Shih, C.: Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Published in Ref. [2] (1993)Google Scholar
  22. 22.
    Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Testing of OpenFOAM CFD code for plane turbulent bluff body flows within conventional URANS approach. In: Proceedings, 8th Int. Conf. on CFD in Oil and Gas, Metallurgical and Process Industries. Trondheim (2011)Google Scholar
  23. 23.
    Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Turbulent bluff body flows modeling using OpenFOAM technology. In: Skallerud, B., Andersson, H.I. (eds.) MekIT’11-Sixth National Conference on Computational Mechanics, pp. 189–208. Trondheim (2011)Google Scholar
  24. 24.
    Lysenko, D.A., Ertesvåg, I.S., Rian K.E.: Modeling of turbulent separated flows using OpenFOAM. Comput. Fluids (2012). doi: 10.1016/j.compfluid.2012.01.015 Google Scholar
  25. 25.
    Löhner, R.: Increasing the number of cores for industrial/legacy codes: approaches, implementation and timings. In: Proceedings, 23rd, Int. Conf. on Parallel Computational Fluid Dynamics, ParCFD 2011. Barcelona (2011)Google Scholar
  26. 26.
    Ma, X., Karamanos, G.S., Karniadakis, G.E.: Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Mani, A., Moin, P., Wang, M.: Computational study of optical distortions by separated shear layers and turbulent wakes. J. Fluid Mech. 625, 273–298 (2009)zbMATHCrossRefGoogle Scholar
  28. 28.
    Meyer, M., Hickel, S., Adams, N.A.: Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow. Int. J. Heat Fluid Flow 31, 368–377 (2010)CrossRefGoogle Scholar
  29. 29.
    Mittal, R.: Progress on LES of flow past a circular cylinder. In: Annual Research Briefs, Center of Turbulence Research, pp. 233–241. Stanford University (1996)Google Scholar
  30. 30.
    Mittal, R., Moin, P.: Suitability of upwind biased schemes for large-eddy simulation. AIAA J. 30(8), 1415–1417 (1997)CrossRefGoogle Scholar
  31. 31.
    Norberg, C.: Experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287–316 (1994)CrossRefGoogle Scholar
  32. 32.
    Norberg, C.: Flow around a circular cylinder: aspects of fluctuating lift. J. Fluids Struct. 15, 459–469 (2001)CrossRefGoogle Scholar
  33. 33.
    Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids. 20, 441–453 (1996)CrossRefGoogle Scholar
  34. 34.
    Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.V.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 39, 1083–1094 (2010)zbMATHCrossRefGoogle Scholar
  35. 35.
    Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008)CrossRefGoogle Scholar
  36. 36.
    Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Prasad A., Williamson, C.H.K.: The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Shanbhogue, S.J., Husain, S., Lieuwen, T.: Lean blowoff of bluff body stabilized flames: scaling and dynamics. Prog. Energy Combust. Sci. 35, 98–120 (2009)CrossRefGoogle Scholar
  39. 39.
    Smagorinsky, J.S.: General circulation experiments with primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  40. 40.
    Son, J., Hanratty, T.: Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from 5 × 103 to 105. J. Fluid Mech. 35, 353–368 (1969)CrossRefGoogle Scholar
  41. 41.
    Vreman, A.W., Geurts, B.J., Kuerten, J.G.M.: Subgrid-modelling in LES of compressible flow. Appl. Sci. Res. 54, 191–203 (1995)zbMATHCrossRefGoogle Scholar
  42. 42.
    Welch, P.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(6), 70–73 (1967)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)CrossRefGoogle Scholar
  44. 44.
    Wissink, J.G., Rodi, W.: Numerical study of the near wake of a circular cylinder. Int. J. Heat Fluid Flow 29, 1060–1070 (2008)CrossRefGoogle Scholar
  45. 45.
    Wornom, S., Ouvrard, H., Salvetti, M.V., Koobus, B., Dervieux, A.: Variational multiscale large-eddy simulations of the flow past a circular cylinder: Reynolds number effects. Comput. Fluids 47(1), 44–50 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Dmitry A. Lysenko
    • 1
  • Ivar S. Ertesvåg
    • 1
  • Kjell Erik Rian
    • 2
  1. 1.Department of Energy and Process EngineeringNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Computational Industry Technologies ASTrondheimNorway

Personalised recommendations