Flow, Turbulence and Combustion

, Volume 89, Issue 3, pp 385–406 | Cite as

External Intermittency Simulation in Turbulent Round Jets

  • T. Gilliland
  • K. K. J. Ranga-Dinesh
  • M. Fairweather
  • S. A. E. G. Falle
  • K. W. Jenkins
  • A. M. Savill


Direct numerical and large eddy simulation (DNS and LES) are applied to study passive scalar mixing and intermittency in turbulent round jets. Both simulation techniques are applied to the case of a low Reynolds number jet with Re = 2,400, whilst LES is also used to predict a high Re = 68,000 flow. Comparison between time-averaged results for the scalar field of the low Re case demonstrate reasonable agreement between the DNS and LES, and with experimental data and the predictions of other authors. Scalar probability density functions (pdfs) for this jet derived from the simulations are also in reasonable accord, although the DNS results demonstrate the more rapid influence of scalar intermittency with radial distance in the jet. This is reflected in derived intermittency profiles, with LES generally giving profiles that are too broad compared to equivalent DNS results, with too low a rate of decay with radial distance. In contrast, good agreement is in general found between LES predictions and experimental data for the mixing field, scalar pdfs and external intermittency in the high Reynolds number jet. Overall, the work described indicates that improved sub-grid scale modelling for use with LES may be beneficial in improving the accuracy of external intermittency predictions by this technique over the wide range of Reynolds numbers of practical interest.


DNS LES Scalar field Intermittency Round jet 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aguirre, R.C., Catrakis, H.J.: On intermittency and the physical thickness of turbulent fluid interfaces. J. Fluid Mech. 540, 39–48 (2005)MATHCrossRefGoogle Scholar
  2. 2.
    Mathew, J., Basu, A.J.: Some characteristics of entrainment at a cylindrical turbulence boundary. Phys. Fluids 14, 2065–2072 (2002)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Hunt, J.C.R., Sandham, N.D., Vassilicos, J.C., Launder, B.E., Monkewitz, P.A., Hewitt, G.F.: Developments in turbulence research: a review based on the 1999 Programme of the Isaac Newton Institute, Cambridge. J. Fluid Mech. 436, 353–391 (2001)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Lipari, G., Stansby, P.K.: Review of experimental data on incompressible turbulent round jets. Flow Turbul. Combust. 87, 79–114 (2011)MATHCrossRefGoogle Scholar
  5. 5.
    Townsend, A.A.: Local isotropy in the turbulent wake of a cylinder. Austr. J. Sci. Res. 1, 161–174 (1948)Google Scholar
  6. 6.
    Corrsin, S., Kistler, A.L.: Free-stream Boundaries of Turbulent Flows. NACA Report No. 1244 (1955)Google Scholar
  7. 7.
    Klebanoff, P.S.: Characteristics of Turbulence in Boundary Layer with Zero Pressure Gradient. NACA Report No. 1247 (1955)Google Scholar
  8. 8.
    Becker, H.A., Hottel, H.C., Williams, G.C.: Concentration intermittency in jets. In: Tenth Symposium (International) on Combustion, The Combustion Institute, pp. 1253–1263 (1965)Google Scholar
  9. 9.
    Wygnanski, I., Fiedler, H.: Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577–612 (1969)CrossRefGoogle Scholar
  10. 10.
    Chevray, R., Tutu, N.K.: Intermittency and preferential transport of heat in a round jet. J. Fluid Mech. 88, 133–160 (1978)CrossRefGoogle Scholar
  11. 11.
    Bilger, R.W., Antonia, R.A., Sreenivasa, K.R.: Determination of intermittency from the probability density function of a passive scalar. Phys. Fluids 19, 1471–1474 (1976)CrossRefGoogle Scholar
  12. 12.
    Nakamura, I., Sakai, Y., Tsunoda, H.: On conditional statistics of the diffusion field of matter by a point source plume in uniform mean shear flow. JSME Int. J. 32, 180–188 (1989)Google Scholar
  13. 13.
    Schefer, R.W., Dibble, R.W.: Mixture fraction field in a turbulent non-reacting propane jet. AIAA J. 39, 64–72 (2001)CrossRefGoogle Scholar
  14. 14.
    Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199–230 (2009)MATHCrossRefGoogle Scholar
  15. 15.
    Mellado, J.P., Wang, L., Peters, N.: Gradient trajectory analysis of a scalar field with external intermittency. J. Fluid Mech. 626, 333–365 (2009)MATHCrossRefGoogle Scholar
  16. 16.
    Prasad, R.R., Sreenivasan, K.R.: Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7, 259–264 (1989)CrossRefGoogle Scholar
  17. 17.
    Westerweel, J., Hofmann, T., Fukushima, C., Hunt, J.C.R.: The turbulent-nonturbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33, 873–878 (2002)Google Scholar
  18. 18.
    Westerweel, J., Fukushima, C., Pedersen, J.M., Hunt, J.C.R.: Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95, 174501 (2005)CrossRefGoogle Scholar
  19. 19.
    Libby, P.A.: On the prediction of intermittent turbulent flows. J. Fluid Mech. 68, 273–295 (1975)CrossRefGoogle Scholar
  20. 20.
    Dopazo, C.: On conditioned averages for intermittent turbulent flows. J. Fluid Mech. 81, 433–438 (1977)MATHCrossRefGoogle Scholar
  21. 21.
    Byggstoyl, S., Kollmann, W.: Closure model for intermittent turbulent flows. Int. J. Heat Mass Transfer 24, 1811–1822 (1981)CrossRefGoogle Scholar
  22. 22.
    Janicka, J., Kollmann, W.: Reynolds stress closure model for conditional variables. In Bradbury, L.J.S., Durst, F., Launder, B.E., Schmidt, F.W., Whitelaw, J.H. (eds.) Turbulent Shear Flows 4, pp. 14.13–14.17. Springer Verlag, Berlin (1984)Google Scholar
  23. 23.
    Kollmann, W., Janicka, J.: The probability density function of a passive scalar in turbulent shear flows. Phys. Fluids 25, 1755–1769 (1982)MATHCrossRefGoogle Scholar
  24. 24.
    Pope, S.B.: Calculation of a plane turbulent jet. AAIA J. 22, 896–904 (1984)MATHCrossRefGoogle Scholar
  25. 25.
    Pope, S.B.: Application of the velocity-dissipation PDF model to inhomogeneous turbulent flows. Phys. Fluids A 3, 1947–1957 (1991)MATHCrossRefGoogle Scholar
  26. 26.
    Cho, R., Chung, M.K.: A k-ε-γ equation turbulence model. J. Fluid Mech. 237, 301–322 (1992)MATHCrossRefGoogle Scholar
  27. 27.
    Kim, S.K., Chung, M.K.: Roles of pressure transport and intermittency for computation of turbulent free shear flows. Int. J. Heat Fluid Flow 16, 194–201 (1995)CrossRefGoogle Scholar
  28. 28.
    Savill, A.M.: One-point closures applied to transition. In: Hallbäck, M., Henningson, D.S., Johansson, A.V., Alfredsson, P.H. (eds.) Turbulence and Transition Modelling, pp. 233–268. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  29. 29.
    Alvani R.F., Fairweather, M.: Prediction of the ignition characteristics of flammable jets using intermittency-based turbulence models and a prescribed pdf approach. Comput. Chem. Eng. 32, 371–381 (2008)CrossRefGoogle Scholar
  30. 30.
    Boersma, B.J., Brethouwer, G., Nieustadt, F.T.M.: A numerical investigation of the effect of the inflow conditions on a self-similar region of a round jet. Phys. Fluids 10, 899–909 (1998)CrossRefGoogle Scholar
  31. 31.
    Lubbers, C.L., Brethouwer, G., Boersma, B.J.: Simulation of the mixing of a passive scalar in a round turbulent jet. Fluid Dyn. Res. 28, 189–208 (2001)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Babu, P.C., Mahesh, K.: Upstream entrainment in numerical simulations of spatially evolving round jets. Phys. Fluids 16, 3699–3705 (2004)CrossRefGoogle Scholar
  33. 33.
    Babu, P.C., Mahesh, K.: Direct Numerical Simulation of Passive Scalar Mixing in Spatially Evolving Turbulent Round Jets. AIAA Paper 2005–1121 (2005)Google Scholar
  34. 34.
    Akselvoll, K., Moin, P.: Large-eddy simulation of turbulent confined coannular jets. J. Fluid Mech. 315, 387–411 (1996)CrossRefGoogle Scholar
  35. 35.
    Mankbadi, R.R., Hayder, M.E., Povinelli, L.A.: Structure of supersonic jet flow and its radiated sound. AIAA J. 32, 897–906 (1994)CrossRefGoogle Scholar
  36. 36.
    Boersma, B.J., Lele, S.K.: Large Eddy Simulation of Mach 0.9 Compressible Jet. AIAA Paper 99-1874 (1999)Google Scholar
  37. 37.
    Tucker, P.: The LES model’s role in jet noise. Prog. Aeronaut. Sci. 44, 427–436 (2008)CrossRefGoogle Scholar
  38. 38.
    da Silva, C.B.: The behaviour of sub–grid models near the turbulent/nonturbulent interface in jets. Phys. Fluids 21, 081702 (2009)CrossRefGoogle Scholar
  39. 39.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  40. 40.
    Germano, M.: A proposal for redefinition of the turbulent stresses in the filtered Navier-Stokes equations. Phys. Fluids 29, 2323–2324 (1986)MATHCrossRefGoogle Scholar
  41. 41.
    Piomelli, U., Liu, J.: Large eddy simulation of rotating channel flows using a localized dynamic model. Phys. Fluids 7, 839–848 (1995)MATHCrossRefGoogle Scholar
  42. 42.
    di Mare, F., Jones, W.P.: LES of turbulent flow past a swept fence. Int. J. Heat Fluid Flow 24, 606–615 (2003)CrossRefGoogle Scholar
  43. 43.
    Schmidt, H., Schumann, U.: Coherent structures of the convective boundary layer derived from large-eddy simulations. J. Fluid Mech. 200, 511–562 (1989)MATHCrossRefGoogle Scholar
  44. 44.
    di Mare, F., Jones, W.P., Menzies, K.R.: Large eddy simulation of a model gas turbine combustor. Combust. Flame 137, 278–294 (2004)CrossRefGoogle Scholar
  45. 45.
    Leonard, B.P.: Simple high-accuracy resolution program for convective modelling of discontinuities. Int. J. Numer. Methods Fluids 8, 1291–1318 (1988)MATHCrossRefGoogle Scholar
  46. 46.
    Jones, W.P.: BOFFIN: A Computer Program for Flow and Combustion in Complex Geometries. Dept Mech Eng, Imperial College of Science, Technology and Medicine (1991)Google Scholar
  47. 47.
    Rhie, C.M., Chow, W.L.: Numerical study of the turbulence flow past an airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)MATHCrossRefGoogle Scholar
  48. 48.
    Choi, H., Moin, P.: Effect of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 113, 1–4 (1994)MATHCrossRefGoogle Scholar
  49. 49.
    Suresh, P.R., Srinivasan, K., Sundararajan, T., Das, S.K.: Reynolds number dependence of plane jet development in the transitional regime. Phys. Fluids 20, 044105 (2008)CrossRefGoogle Scholar
  50. 50.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)MATHCrossRefGoogle Scholar
  51. 51.
    Olivieri, D.A., Fairweather, M., Falle, S.A.E.G., Prediction of external intermittency using RANS-based turbulence modelling and a transported PDF approach. Comput. Fluids 47, 75–84 (2011)CrossRefGoogle Scholar
  52. 52.
    Andreotti, B., Douady, S.: On probability distribution functions in turbulence. Part 1. A regularisation method to improve the estimate of a PDF from an experimental histogram, Physica D 132, 111–132 (1999)MATHCrossRefGoogle Scholar
  53. 53.
    Birch, A.D., Brown, D.R., Dodson, M.G., Thomas, J.R.: The turbulent concentration field of a methane jet. J. Fluid Mech. 88, 431–449 (1978)CrossRefGoogle Scholar
  54. 54.
    Dahm, W.J.A., Dimotakis, P.E.: Measurements of entrainment and mixing in turbulent jets. AIAA J. 25, 1216–1223 (1987)CrossRefGoogle Scholar
  55. 55.
    Dowling, D.R., Dimotakis, P.E.: Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218, 109–141 (1990)CrossRefGoogle Scholar
  56. 56.
    Shaughnessy, E.J., Morton, J.B.: Laser light-scattering measurements of particle concentration in a turbulent jet. J. Fluid Mech. 80, 129–148 (1977)CrossRefGoogle Scholar
  57. 57.
    Becker, H.A., Hottel, H.C., Williams, G.C.: The nozzle-fluid concentration field of the round, turbulent, free jet. J. Fluid Mech. 30, 285–303 (1967)CrossRefGoogle Scholar
  58. 58.
    Pitts, W.M.: Reynolds number effects on the mixing behaviour of axisymmetric turbulent jets. Exp. Fluids 11, 135–141 (1991)Google Scholar
  59. 59.
    Leonard, B.P., Mokhtari, S.: Beyond first order upwind: The ULTRA SHARP alternative for non-oscillatory steady-simulation of convection. Int. J. Numer. Methods Eng. 30, 729–766 (1990)CrossRefGoogle Scholar
  60. 60.
    Ranga-Dinesh, K.K.J., Savill, A.M., Jenkins, K.W., Kirkpatrick, M.P.: LES of intermittency in a turbulent round jet with different inlet conditions. Comput. Fluids 39, 1685–1695 (2010)CrossRefGoogle Scholar
  61. 61.
    Ranga-Dinesh, K.K.J., Jenkins, K.W., Savill, A.M., Kirkpatrick, M.P.: Swirl effects on external intermittency in turbulent jets. Int. J. Heat Fluid Flow 33, 193–206 (2012)CrossRefGoogle Scholar
  62. 62.
    Schefer, R.W., Dibble, R.W.: Conditional sampling of velocity in a turbulent nonpremixed propane jet. AIAA J. 25, 1318–1330 (1987)CrossRefGoogle Scholar
  63. 63.
    Frisch, U., Sulem, P.L., Nelkin, M.: A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87, 719–736 (1978)MATHCrossRefGoogle Scholar
  64. 64.
    Yeung, P.K., Donzis, D.A., Sreenivasan, K.R.: High-Reynolds-number simulation of turbulent mixing. Phys. Fluids 17, 081703 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • T. Gilliland
    • 1
  • K. K. J. Ranga-Dinesh
    • 3
  • M. Fairweather
    • 1
  • S. A. E. G. Falle
    • 2
  • K. W. Jenkins
    • 3
  • A. M. Savill
    • 3
  1. 1.School of Process, Environmental and Materials EngineeringUniversity of LeedsLeedsUK
  2. 2.School of MathematicsUniversity of LeedsLeedsUK
  3. 3.School of EngineeringCranfield UniversityBedfordUK

Personalised recommendations