Advertisement

Flow, Turbulence and Combustion

, Volume 90, Issue 4, pp 723–739 | Cite as

Simultaneous Measurements of Temperature and CO Concentration in Stagnation Stabilized Flames

  • Avinash Singh
  • Markus Mann
  • Thilo Kissel
  • Jan Brübach
  • Andreas DreizlerEmail author
Article

Abstract

An impinging jet burner was developed to investigate flame-wall interactions (FWI) using laser based diagnostics. CO concentrations were measured with two-photon laser-induced fluorescence (LIF) in combination with coherent anti-Stokes Raman spectroscopy (CARS) gas phase temperature measurements. Besides being the principal factor in chemical kinetics, temperature data is required to correct the CO LIF data for various factors like density variation, quenching and variation in the Boltzmann population. Phosphor thermometry was used to determine surface temperatures of the wall and to estimate the heat flux. In an parameter study Reynolds numbers and fuel equivalence ratio were varied.

Keywords

Flame-wall interaction CARS CO LIF Phosphor thermometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, Y., Bray, K.N.C., Rogg, B.: Temporally and spatially resolved investigation of flame propagation and extinction in the vicinity of walls. Combust. Sci. Technol. 113(1), 255–271 (1996)CrossRefGoogle Scholar
  2. 2.
    Schoenung, M., Hanson, R.K.: CO and temperature measurements in a flat flame by laser absorption spectroscopy and probe techniques. Combust. Sci. Technol. 24(5), 227–237 (1980)CrossRefGoogle Scholar
  3. 3.
    Nooren, P.A., Versluis, M., van der Meer, T.H., Barlow, R.S., Frank, J.H.: Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl. Phys. B 71, 95–111 (2000). doi: 10.1007/s003400000278 CrossRefGoogle Scholar
  4. 4.
    Wang, J., Maiorov, M., Baer, D.S., Garbuzov, D.Z., Connolly, J.C., Hanson, R.K.: In situ combustion measurements of CO with diode-laser absorption near 2.3 μm. Appl. Opt. 39(30), 5579–5589 (2000)CrossRefGoogle Scholar
  5. 5.
    Chao, X., Jeffries, J.B., Hanson, R.K.: Absorption sensor for CO in combustion gases using 2.3 μm tunable diode lasers. Meas. Sci. Technol. 20(11), 115201 (2009)CrossRefGoogle Scholar
  6. 6.
    Aldén, M., Wallin, S., Wendt, W.: Applications of two-photon absorption for detection of CO in combustion gases. Appl. Phys. B 33, 205–208 (1984)CrossRefGoogle Scholar
  7. 7.
    Seitzman, J.M., Haumann, J., Hanson, Ronald K.: Quantitative two-photon LIF imaging of carbon monoxide in combustion gases. Appl. Opt. 26, 2892–2899 (1987)CrossRefGoogle Scholar
  8. 8.
    Linow, S., Dreizler, A., Janicka, J., Hassel, E.P.: Comparison of two-photon excitation schemes for CO detection in flames. Appl. Phys. B 71, 689–696 (2000)CrossRefGoogle Scholar
  9. 9.
    Rensberger, K.J., Jeffries, J.B., Copeland, R.A., Kohse-Höinghaus, K., Wise, M.L., Crosley, D.R.: Laser-induced fluorescence determination of temperatures in low pressure flames. Appl. Opt. 28(17), 3556–3566 (1989)CrossRefGoogle Scholar
  10. 10.
    Huber, K.P., Herzberg, G.: Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules. Van Nostrand, New York (1979)Google Scholar
  11. 11.
    Kulatilaka, W.D., Patterson, B.D., Frank, J.H., Settersten, T.B.: Comparison of nanosecond and picosecond excitation for interference-free two-photon laser-induced fluorescence detection of atomic hydrogen in flames. Appl. Opt. 47(26), 4672–4683 (2008)CrossRefGoogle Scholar
  12. 12.
    Settersten, T.B., Dreizler, A., Farrow, R.L.: Temperature- and species-dependent quenching of CO B probed by two-photon laser-induced fluorescence using a picosecond laser. J. Chem. Phys. 117(7), 3173–3179 (2002)CrossRefGoogle Scholar
  13. 13.
    Barlow, R.S., Frank, J.H., Fiechtner, G.J.: Comparison of CO Measurements by Raman Scattering and Two-Photon LIF in Laminar and Turbulent Methane Flames. Spring Meeting of the Western States Section/The Combustion Institute (1998)Google Scholar
  14. 14.
    Gregor, M.A., Dreizler, A.: A quasi-adiabatic laminar flat flame burner for high temperature calibration. Meas. Sci. Technol. 20, 065402 (2009)CrossRefGoogle Scholar
  15. 15.
    Brübach, J., van Veen, E., Dreizler, A.: Combined phosphor and CARS thermometry at the wall-gas interface of impinging flame and jet systems. Exp. Fluids 44, 897–904 (2008)CrossRefGoogle Scholar
  16. 16.
    Eckbreth, A.C.: Laser Diagnostics for Combustion Temperature and Species. CRC, 2nd edn. (1996)Google Scholar
  17. 17.
    Brübach, J., Hage, M., Janicka, J., Dreizler, A.: Simultaneous phosphor and CARS thermometry at the wall-gas interface within a combustor. Proc. Combust. Inst. 32(1), 855–861 (2009)CrossRefGoogle Scholar
  18. 18.
    Brübach, J., Dreizler, A., Janicka, J.: Gas compositional and pressure effects on thermographic phosphor thermometry. Meas. Sci. Technol. 18(3), 764–770 (2007)CrossRefGoogle Scholar
  19. 19.
    Bruneaux, G., Poinsot, T., Ferziger, J.H.: Premixed flame/wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)zbMATHCrossRefGoogle Scholar
  20. 20.
    Brübach, J., Zetterberg, J., Omrane, A., Li, Z.S., Alden, M., Dreizler, A.: Determination of surface normal temperature gradients using thermographic phosphors and filtered Rayleigh scattering. Appl. Phys. B 84, 537–541 (2006)CrossRefGoogle Scholar
  21. 21.
    Salem, M., Staude, S., Bergmann, U., Atakan, B.: Heat flux measurements in stagnation point methane/air flames with thermographic phosphors. Exp. Fluids 49, 797–807 (2010)CrossRefGoogle Scholar
  22. 22.
    Fuyuto, T., Kronemayer, H., Lewerich, B., Brübach, Jan., Fujikawa, T., Akihama, K., Dreier, T., Schulz, C.: Temperature and species measurement in a quenching boundary layer on a flat-flame burner. Exp. Fluids 49, 783–795 (2010)CrossRefGoogle Scholar
  23. 23.
    Egolfopoulos, F.N., Zhang, H., Zhang, Z.: Wall effects on the propagation and extinction of steady, strained, laminar premixed flames. Combust. Flame 109(1–2), 237–252 (1997)CrossRefGoogle Scholar
  24. 24.
    Goodwin, D.G.: An Open-Source, Extensible Software Suite for CVD Process Simulation (2003)Google Scholar
  25. 25.
    Gri-mech website. http://www.me.berkeley.edu/grimech (2006)
  26. 26.
    Stricker, W., Meier, W.: The use of CARS for temperature measurements in practical flames. Trends in Appl. Spectrosc. 1, 231–260 (1993)Google Scholar
  27. 27.
    Eckbreth, A.C.: BOXCARS: Crossed-beam phase-matched CARS generation in gases. Appl. Phys. Lett. 32 (7), 421–423 (1978)CrossRefGoogle Scholar
  28. 28.
    Clark, G., Farrow, R.L.: CARSFT Code. Sandia National Laboratory, Livermore, CA (1990)Google Scholar
  29. 29.
    Tobias, I., Fallon, R.J., Vanderslice, J.T.: Potential Energy Curves for CO*. J. Chem. Phys. 33(6), 1683–1640 (1960)CrossRefGoogle Scholar
  30. 30.
    Tsuji, H., Yamaoka, I.: The counterflow diffusion flame in the forward stagnation region of a porous cylinder. Symp. (Int.) on Comb. 11(1), 979–984 (1967)CrossRefGoogle Scholar
  31. 31.
    Kissel, T., Baum, E., Dreizler, A., Brübach, J.: Two-dimensional thermographic phosphor thermometry using a CMOS high speed camera system. Appl. Phys. B 96, 731–734 (2009). doi: 10.1007/s00340-009-3626-5 CrossRefGoogle Scholar
  32. 32.
    Brübach, J., Janicka, J., Dreizler, A.: An algorithm for the characterisation of multi-exponential decay curves. Opt. Laser Eng. 47(1), 75–79 (2009)CrossRefGoogle Scholar
  33. 33.
    Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids. McGraw Hill (1987)Google Scholar
  34. 34.
    Mason, E.A., Saxena, S.C.: Approximate formula for the thermal conductivity of gas mixtures. Phys. Fluid 1, 361–369 (1958)MathSciNetCrossRefGoogle Scholar
  35. 35.
    VDI - Gesellschaft Verfahrenstechnik und Chemie-ingenieurwesen (eds.): VDI-Wärmeatlas. Springer (2002)Google Scholar
  36. 36.
    Hofmann, H.M.: Wärmeübergang beim pulsierenden Prallstrahl. PhD thesis, Universität Fridericiana Karlsruhe (2005)Google Scholar
  37. 37.
    Popp, P., Baum, M.: Analysis of wall heat fluxes, reaction mechanisms, and unburnt hydrocarbons during the head-on quenching of a laminar methane flame. Combust. Flame 108(3), 327–348 (1997)CrossRefGoogle Scholar
  38. 38.
    Wichman, I.S., Bruneaux, G.: Head-on quenching of a premixed flame by a cold wall. Combust. Flame 103(4), 296–310 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Avinash Singh
    • 1
  • Markus Mann
    • 1
  • Thilo Kissel
    • 1
  • Jan Brübach
    • 1
  • Andreas Dreizler
    • 1
    Email author
  1. 1.FG Reaktive Strömungen und MesstechnikCenter of Smart InterfacesDarmstadtGermany

Personalised recommendations