Flow, Turbulence and Combustion

, Volume 88, Issue 4, pp 503–527 | Cite as

Lifted Diffusion Flame Stabilisation: Conditional Analysis of Multi-Parameter High-Repetition Rate Diagnostics at the Flame Base

  • Robert L. GordonEmail author
  • Isaac Boxx
  • Campbell Carter
  • Andreas Dreizler
  • Wolfgang Meier


Data from simultaneous 5 kHz OH-PLIF and Stereo-PIV at the stabilisation region of a propane/ argon lifted diffusion jet flame are presented for jet-exit Reynolds numbers of 10,000 and 15,000. The time history leading to the upstream appearance of flame islands is investigated for both flames. These flame islands are found to be preceded, on average, by a increased out-of-plane fluid velocity. Conditioning local flame statistics on the instantaneous flame base, as indicated by the OH image, permits analysis of upstream and downstream flame motions (in laboratory co-ordinates). The relative velocity is investigated by conditioning out the data with significant out-of-plane fluid velocity. This has introduced greater accuracy over previous attempts at estimating this quantity. No evidence is found for a correlation between increased turbulence intensity or the passage of large scale eddies with increased flame propagation speeds. Furthermore, divergence at the flame base is not found to correlate with upstream flame motion (as a combination of propagation and convection). The volume of the data investigated has led to the development of robust statistics for all quantities presented here.


Lifted diffusion flame Stabilisation mechanism High repetition rate diagnostics OH-PLIF Stereo-PIV Conditional statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10494_2011_9365_MOESM1_ESM.pdf (2.8 mb)
(PDF 2.75 MB)


  1. 1.
    Ashurst, W., Kerstein, A., Kerr, R., Gibson, C.: Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30, 2343–2353 (1987)CrossRefGoogle Scholar
  2. 2.
    Böhm B, Heeger C, Boxx I, Meier W, Dreizler, A.: Time-resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. In: Proceedings of the Combustion Institute, vol. 32, pp. 1647–1654 (2009)Google Scholar
  3. 3.
    Boulanger, J., Vervisch, L., Reveillon, J., Ghosal, S.: Effects of heat release in laminar diffusion flames lifted on round jets. Combust. Flame 134, 355–368 (2003)CrossRefGoogle Scholar
  4. 4.
    Boxx, I., Heeger, C., Gordon, R., Böhm, B., Aigner, M., Dreizler, A., Meier, W.: Simultaneous three-component PIV/OH-PLIF measurements of a turbulent lifted, C3H8-Argon jet diffusion flame at 1.5 kHz repetition rate. In: Proceedings of the Combustion Institute, vol. 32, pp. 905–912 (2009)Google Scholar
  5. 5.
    Boxx, I., Heeger, C., Gordon, R., Böhm, B., Dreizler, A., Meier, W.: On the importance of temporal context in interpretation of flame discontinuities. Combust. Flame 156, 269–271 (2009)CrossRefGoogle Scholar
  6. 6.
    Boxx, I., Stöhr, M., Carter, C., Meier, W.: Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames. Appl. Phys., B Lasers Opt. 95, 23–29 (2009)CrossRefGoogle Scholar
  7. 7.
    Boxx, I., Stöhr, M., Carter, C., Meier, W.: Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust. Flame 157, 1510–1525 (2010)CrossRefGoogle Scholar
  8. 8.
    Demare, D., Baillot, F.: The role of secondary instabilities in the stabilization of a nonpremixed lifted jet flame. Phys. Fluids 13, 2662–2670 (2001)CrossRefGoogle Scholar
  9. 9.
    Ghosal, S., Vervisch, L.: Theoretical and numerical study of a symmetrical triple flame using the parabolic flame path approximation. J. Fluid Mech. 415, 227–260 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Goodwin, DG.: An open source, extensible software suite for CVD process simulation. In: Allendorf, M., Maury, Teyssandier, F. (eds.) Proc. CVD XVI and EuroCVD XIV (2003)Google Scholar
  11. 11.
    Han, D., Mungal, M.: Observations on the transition from flame liftoff to flame blowout. In: Proceedings of the Combustion Institute, vol. 28, pp. 537–543 (2000)Google Scholar
  12. 12.
    Heeger, C., Böhm, B., Ahmed, S., Gordon, R., Boxx, I., Meier, W., Dreizler, A., Mastorakos, E.: Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. In: Proceedings of the Combustion Institute, vol. 32, pp. 2957–2964 (2009)Google Scholar
  13. 13.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Joedicke, A., Peters, N., Mansour, M.: The stabilisation mechanism and structure of turbulent hydrocarbon lifted flames. In: Proceedings of the Combustion Institute, vol. 30, pp. 901–909 (2005)Google Scholar
  15. 15.
    Kelman, J., Eltobaji, A., Masri, A.: Laser imaging in the stabilization region of turbulent lifted flames. Combust. Sci. Technol. 135, 117–134 (1998)CrossRefGoogle Scholar
  16. 16.
    Konle, M., Kiesewetter, F., Sattelmayer, T.: Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback. Exp. Fluids 44, 529–538 (2008)CrossRefGoogle Scholar
  17. 17.
    Kothnur, P., Clemens, N.: Effects of unsteady strain rate on scalar dissipation structures in turbulent planar jets. Phys. Fluids 17(12), 125,104 (2005)CrossRefGoogle Scholar
  18. 18.
    Lawn, C.: Lifted flames on fuel jets in co-flowing air. Pror. Energy Combust. Sci. 35, 1–30 (2009)CrossRefGoogle Scholar
  19. 19.
    Lyons, K.: Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Pror. Energy Combust. Sci. 33, 211–231 (2007)CrossRefGoogle Scholar
  20. 20.
    Lyons, K., Watson, K., Carter, C., Donbar, J.: Upstream islands of flame in lifted-jet partially premixed combustion. Combust. Sci. Technol. 179, 1029–1037 (2007)CrossRefGoogle Scholar
  21. 21.
    Maurey, C., Cessou, A., Lecordier, B., Stepowski, D.: Statistical flow dynamic properties conditioned on the oscillating stabilization location of turbulent lifted flame. In: Proceedings of the Combustion Institute, vol. 28, pp. 545–551 (2000)Google Scholar
  22. 22.
    Muñiz, L., Mungal, M.: Instantaneous flame-stabilization velocities in lifted-jet diffusion flames. Combust. Flame 111, 16–31 (1997)CrossRefGoogle Scholar
  23. 23.
    Peters, N.: Turbulent Combustion. Cambridge University Press (2000)Google Scholar
  24. 24.
    Pitts, W.: Assessment of theories for the behavior and blowout of lifted turbulent jet diffusion flames. In: Proceedings of the Combustion Institute, vol. 22, pp. 809–816 (1988)Google Scholar
  25. 25.
    Rehm, J., Clemens, N.: The relationship between vorticity/strain and reaction zone structure in turbulent non-premixed jet flames. In: Proceedings of the Combustion Institute, vol. 27, pp. 1113–1120 (1998)Google Scholar
  26. 26.
    Schefer, R.: Three-dimensional structure of lifted, turbulent-jet flames. Combust. Sci. Technol. 125, 371–394 (1997)CrossRefGoogle Scholar
  27. 27.
    Schefer, R., Goix, P.: Mechanism of flame stabilization in turbulent, lifted-jet flames. Combust. Flame 112, 559–574 (1998)CrossRefGoogle Scholar
  28. 28.
    Steinberg, A., Driscoll, J., Ceccio, S.: Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44, 985–999 (2008)CrossRefGoogle Scholar
  29. 29.
    Su, L., Sun, O., Mungal, M.: Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144, 494–512 (2006)CrossRefGoogle Scholar
  30. 30.
    Sutton, J., Driscoll, J.: Imaging of local flame extinction due to the interaction of scalar dissipation layers and the stoichiometric contour in turbulent non-premixed flames. In: Proceedings of the Combustion Institute, vol. 31, pp. 1487–1495 (2007)Google Scholar
  31. 31.
    Tacke, M., Geyer, D., Hassel, E., Janicka, J.: A detailed investigation of stabilization point of lifted turbulent diffusion flames. In: Proceedings of the Combustion Institute, vol. 27, pp. 1157–1165 (1998)Google Scholar
  32. 32.
    Upatnieks, A., Driscoll, J., Rasmussen, C., Ceccio, S.: Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259–272 (2004)CrossRefGoogle Scholar
  33. 33.
    Watson, K., Lyons, K., Donbar, J., Carter, C.: Scalar and velocity field measurements in a lifted CH4-air diffusion flame. Combust. Flame 117, 257–271 (1999)CrossRefGoogle Scholar
  34. 34.
    Watson, K., Lyons, K., Donbar, J., Carter, C.: Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame. Combust. Flame 123, 252–265 (2000)CrossRefGoogle Scholar
  35. 35.
    Watson, K., Lyons, K., Donbar, J., Carter, C.: Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames. In: Proceedings of the Combustion Institute, vol. 29, pp. 1905–1912 (2002)Google Scholar
  36. 36.
    Watson, K., Lyons, K., Donbar, J., Carter, C.: On scalar dissipation and partially premixed flame propagation. Combust. Sci. Technol. 175, 649–664 (2003)CrossRefGoogle Scholar
  37. 37.
    Yoda, M., Hesselink, L., Mungal, M.: Instantaneous three-dimensional concentration measurements in the self-similar region of a round high-Schmidt-number jet. J. Fluid Mech. 279, 313–350 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Robert L. Gordon
    • 1
    Email author
  • Isaac Boxx
    • 2
  • Campbell Carter
    • 3
  • Andreas Dreizler
    • 4
  • Wolfgang Meier
    • 2
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK
  2. 2.Institut für VerbrennungstechnikDeutsches Zentrum für Luft-und Raumfahrt (DLR)StuttgartGermany
  3. 3.Air Force Research Laboratory (AFRL)/RZASWright-Patterson AFBUSA
  4. 4.Center of Smart InterfacesDarmstadtGermany

Personalised recommendations