Flow, Turbulence and Combustion

, Volume 86, Issue 3–4, pp 667–688 | Cite as

A Non-Adiabatic Flamelet Progress–Variable Approach for LES of Turbulent Premixed Flames

  • Donato Cecere
  • Eugenio Giacomazzi
  • Franca R. Picchia
  • Nunzio Arcidiacono
  • Filippo Donato
  • Roberto Verzicco


A progress variable/flame surface density/probability density function method has been employed for a Large Eddy Simulation of a CH4/Air turbulent premixed bluff body flame. In particular, both mean and variance of the progress variable are transported and subgrid spatially filtered gradient contributes to model the flame surface density (that introduces the effect of the subgrid flame reaction zone) and to presume a probability density function (that introduces the effect of subgrid fluctuations on chemistry). Chemistry is preliminarly tabulated in terms of laminar premixed flames and enthalpy is included as a new coordinate in their tabulation to take into account heat losses in the flowfield. Then, the PDF is used to build a turbulent flamelet library. The filtered mass, momentum, enthalpy and scalar equations mentioned above are integrated by an explicit scheme using finite differences, 2nd–order accurate in space and third order in time, over a cylindrical non-uniform grid using a staggered mesh. The bluff-body geometry is modelled by using the Immersed Boundary Method. The numerical predictions are compared with the available experimental data.


Premixed turbulent flame Large Eddy Simulation Progress variable Flame surface density Probability density function Immersed Boundary Method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Ann. Rev. Fluid Mech. 38, 453–483 (2006)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Peters, N.: The turbulent burning velocity for large scale and small scale turbulence. J. Fluid Mech. 384, 107–132 (1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    Bradley, D., Gaskell, H., Gu, X.J.: Mathematical modeling of turbulent non-premixed piloted-jet flames with local extinctions. Proc. Combust. Inst. 27, 1199–1206 (1998)Google Scholar
  4. 4.
    Bray, K.N.C., Libby, P.A., Moss, J.B.: Flamelet crossing frequencies and mean reaction rates in premixed turbulent combustion. Combust. Sci. Technol. 41, 143–172 (1984)CrossRefGoogle Scholar
  5. 5.
    Gicquel, O.: Développement d’une Nouvelle Méthod de Réduction des Schémas Cinétiques: Application au Méthane, pp. 353–364. Ecole Centrale de Paris (2001)Google Scholar
  6. 6.
    Gicquel, O., Darabiha, N., Thévenin, D.: Laminar premixed Hydrogen/Air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28, 1901–1908 (2000)CrossRefGoogle Scholar
  7. 7.
    Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling nonadiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Model. 7, 449–470 (2003)Google Scholar
  8. 8.
    Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)CrossRefGoogle Scholar
  9. 9.
    Domingo, P., Vervisch, L., Vaynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152, 415–432 (2008)CrossRefGoogle Scholar
  10. 10.
    Peters, N.: 21th Symp. (Int.) on Combustion, pp. 1231–1250 (1986)Google Scholar
  11. 11.
    Fiorina, B., Gicquel, O., Vervisch, L., Darabiha, N.: Premixed turbulent combustion modeling using tabulated detailed chemistry and PDF. Proc. Combust. Inst. 30 (2005)Google Scholar
  12. 12.
    Fiorina, B., Gicquel, O., Vervisch, L., Darabiha, N., Carpentier, S.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 147–160 (2005)CrossRefGoogle Scholar
  13. 13.
    Kee, R.J., Rupley, R.M., Miller, J.A.: Chemkin-II: a Fortran chemical kinetics package for the analysis of gas phase chemical kinetics. Technical Report, Sandia National Laboratory (1994)Google Scholar
  14. 14.
    Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)CrossRefGoogle Scholar
  15. 15.
    Moin, P., Pierce, C.D.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 72–97 (2004)MathSciNetGoogle Scholar
  16. 16.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)CrossRefzbMATHGoogle Scholar
  17. 17.
    DesJardins, E.P., Frankel, H.S.: Large eddy simulation of a nonpremixed reacting jet: application and assessment of subgrid-scale combustion models. Phys. Fluids 10, 2298–2314 (1998)CrossRefGoogle Scholar
  18. 18.
    Pierce, C.D., Moin, P.: A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar. Phys. Fluids 10, 3041–3044 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Pope, S.B.: The evolution of surfaces in turbulence. Int. J. Eng. Sci. 26(5), 445–469 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Vervisch, L., Bidaux, E.: Surface density function in premixed turbulent combustion modeling, similarities between probability density function and flame surface approaches. Phys. Fluids 7, 2496 (1995)CrossRefzbMATHGoogle Scholar
  21. 21.
    Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combust. Flame 146, 665–673 (2006)CrossRefGoogle Scholar
  22. 22.
    Vervisch, L., Domingo, P., Lodato, G., Vaynante, D.: Scalar energy fluctuations in large eddy simulation of turbulent flames: statistical budgets and mesh quality criterion. Combust. Flame 157, 778–789 (2010)CrossRefGoogle Scholar
  23. 23.
    Poinsot, T., Veynante, D.: In: Edwards, R.T. (ed.) Theoretical and Numerical Combustion (2005)Google Scholar
  24. 24.
    Peters, N.: Turbulent Combustion. Cambridge University Press (2000)Google Scholar
  25. 25.
    Roomina, M.R., Bilger, R.W.: Conditional Moment Closure (CMC) Predictions of a turbulent methane-air jet flame. Combust. Flame 125(3), 1176–1195 (2001)CrossRefGoogle Scholar
  26. 26.
    Jimenez, J., Linan, A., Rogers, M.M., Higuera, F.J.: A priori testing of subgrid models for chemically reacting non-premixed turbulent shear flows. J. Fluid Mech. 349, 149–171 (1997)CrossRefzbMATHGoogle Scholar
  27. 27.
    Jin, B., Grout, R., Bushe, W.K.: Conditional source–term estimation as a method for chemical closure in premixed turbulent reacting flow. Flow Turbul. Combust. 81, 563–582 (2008)CrossRefGoogle Scholar
  28. 28.
    Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yusof, J.: Combined immersed–boundary/finite–difference methods for three–dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Tseng, Y.H., Ferziger, J.H.: A ghost cell immersed boundary method for flows in complex geometry. J. Comput. Phys. 192, 593–623 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Iaccarino, G., Verzicco, R.: Immersed boundary technique for turbulent flow simulations. App. Mech. Rev. ASME 56, 331–347 (2003)CrossRefGoogle Scholar
  31. 31.
    O’Rourke, J.: Computational Geometry in C. Cambridge University Press (1998)Google Scholar
  32. 32. ENEA, Italian Agency for New Technologies, Energy and Environment (2007)
  33. 33.
    Paravento, F., Pourquie, M.J., Boersma, B.J.: An immersed boundary method for complex flow and heat transfer. Flow Turbul. Combust. 80, 187–206 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Donato Cecere
    • 1
  • Eugenio Giacomazzi
    • 1
  • Franca R. Picchia
    • 1
  • Nunzio Arcidiacono
    • 1
  • Filippo Donato
    • 2
  • Roberto Verzicco
    • 3
  1. 1.Sustainable Combustion Processes Laboratory, S.P.081ENEARomeItaly
  2. 2.Department of Electrical EngineeringUniversity “Sapienza”RomeItaly
  3. 3.Department of Mechanical EngineeringUniversity “Tor Vergata”RomeItaly

Personalised recommendations