Advertisement

Flow, Turbulence and Combustion

, Volume 87, Issue 2–3, pp 205–235 | Cite as

Statistics and Modelling of Turbulent Kinetic Energy Transport in Different Regimes of Premixed Combustion

  • Nilanjan Chakraborty
  • Mohit Katragadda
  • R. Stewart Cant
Article

Abstract

The statistical behaviour of turbulent kinetic energy transport in turbulent premixed flames is analysed using data from three-dimensional Direct Numerical Simulation (DNS) of freely propagating turbulent premixed flames under decaying turbulence. For flames within the corrugated flamelets regime, it is observed that turbulent kinetic energy is generated within the flame brush. By contrast, for flames within the thin reaction zones regime it has been found that the turbulent kinetic energy decays monotonically through the flame brush. Similar trends are observed also for the dissipation rate of turbulent kinetic energy. Within the corrugated flamelets regime, it is demonstrated that the effects of the mean pressure gradient and pressure dilatation within the flame are sufficient to overcome the effects of viscous dissipation and are responsible for the observed augmentation of turbulent kinetic energy in the flame brush. In the thin reaction zones regime, the effects of the mean pressure gradient and pressure dilatation terms are relatively much weaker than those of viscous dissipation, resulting in a monotonic decay of turbulent kinetic energy across the flame brush. The modelling of the various unclosed terms of the turbulent kinetic energy transport equation has been analysed in detail. The predictions of existing models are compared with corresponding quantities extracted from DNS data. Based on this a-priori DNS assessment, either appropriate models are identified or new models are proposed where necessary. It is shown that the turbulent flux of turbulent kinetic energy exhibits counter-gradient (gradient) transport wherever the turbulent scalar flux is counter-gradient (gradient) in nature. A new model has been proposed for the turbulent flux of turbulent kinetic energy, and is found to capture the qualitative and quantitative behaviour obtained from DNS data for both the corrugated flamelets and thin reaction zones regimes without the need to adjust any of the model constants.

Keywords

Turbulent premixed flames Turbulent kinetic energy Corrugated flamelets regime Thin reaction zones regime Reynolds Averaged Navier Stokes simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jones, W.P., Launder, B.E.: The calculation of low-Reynolds-number phenomena with a two equation model of turbulence. Int. J. Heat Mass Transfer. 16, 1119–1130 (1973)CrossRefGoogle Scholar
  2. 2.
    Durbin, P.A., Pettersson-Reif, B.A.: Statistical Theory and Modelling of Turbulent Flows, 1st edn. Wiley, Hoboken (2001)Google Scholar
  3. 3.
    Wilcox, D.C.: Turbulence Modelling for CFD, 2nd edn. D.C.W., La Cañada (2002)Google Scholar
  4. 4.
    Karlovitz, B., Jr Denniston, D.W., Knapschaefer, D.H., Wells, F.E.: Studies on turbulent flames. Proc. Combust. Inst. 4, 613–620 (1953)Google Scholar
  5. 5.
    Launder, B.E.: Heat and mass transport by turbulence. In: Bradshaw, P. (ed.) Topics in Applied Physics, vol. 12, pp. 231–287, Springer (1976)Google Scholar
  6. 6.
    Bray, K.N.C.: Studies of the turbulent burning velocity. Proc. R. Soc. Lond. A 431, 315–355 (1990)CrossRefGoogle Scholar
  7. 7.
    Candel, S., Veynante, D., Lacas, F., Maistret, E., Darabiha, N., Poinsot, T.: Coherent flamelet model: applications and recent extensions. In: Larrouturou, B.E. (ed.) Recent Advances in Combustion Modelling, pp. 19–64. World Scientific, Singapore (1990)Google Scholar
  8. 8.
    Duclos, J.M., Veynante, D., Poinsot, T.J.: A comparison of flamelet models for premixed turbulent combustion. Combust. Flame. 95, 101–117 (1993)CrossRefGoogle Scholar
  9. 9.
    Mantel, T., Bilger, R.W.: Conditional statistics in a turbulent premixed flame derived from direct numerical simulation. Combust. Sci. Technol. 96(4), 393–417 (1995)CrossRefGoogle Scholar
  10. 10.
    Chakraborty, N., Rogerson, J.W., Swaminathan, N.: A-Priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids. 20, 045106 (2008)CrossRefGoogle Scholar
  11. 11.
    Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)CrossRefGoogle Scholar
  12. 12.
    Bray, K.N.C., Libby, P.A.: Interaction effects in turbulent premixed flames. Phys. Fluids A 19, 1687–1701 (1976)MATHCrossRefGoogle Scholar
  13. 13.
    Moreau, P., Boutier, A.: Laser velocimeter measurements in a turbulent flame. Proc. Combust. Inst. 16, 1747–1756 (1977)Google Scholar
  14. 14.
    Bray, K.N.C., Libby, P.A., Masuya, G., Moss, J.B.: Turbulence production in premixed turbulent flames. Combust. Sci. Technol. 25, 127–140 (1980)CrossRefGoogle Scholar
  15. 15.
    Borghi, R., Escudie, D.: Assessment of a theoretical model of turbulent combustion by comparison with a simple experiment. Combust. Flame. 56, 149–164 (1984)CrossRefGoogle Scholar
  16. 16.
    Chomiak, J., Nisbet, J.: Modelling variable density effects in turbulent flames. Combust. Flame. 102, 371–386 (1995)CrossRefGoogle Scholar
  17. 17.
    Kuznetsov, V.R.: Estimate of the correlation between pressure pulsations and the divergence of the velocity in subsonic flows of variable density. Fluid Dyn. 14(3), 328–334 (1979)MATHCrossRefGoogle Scholar
  18. 18.
    Strahle, W.C.: Velocity-pressure gradient correlation in turbulent reactive flows. Combust. Sci. Technol. 32, 289–305 (1983)CrossRefGoogle Scholar
  19. 19.
    Rutland, C.J., Cant, R.S.: Turbulent transport in premixed flames, pp.75–94. Proc. of 1994 Summer Program, Centre for Turbulence Research, Stanford University/NASA Ames, Stanford, CA (1994)Google Scholar
  20. 20.
    Zhang, S., Rutland, C.J.: Premixed flame effects on turbulence and pressure-related terms. Combust. Flame. 102, 447–461 (1995)CrossRefGoogle Scholar
  21. 21.
    Nishiki, S., Hasegawa, T., Borghi, R., Himeno, R.: Modelling of flame generated turbulence based on Direct Numerical Simulation databases. Proc. Combust. Inst. 29, 2017–2022 (2002)CrossRefGoogle Scholar
  22. 22.
    Peters, N.: Turbulent Combustion, 1st edn. Cambridge University Press, UK (2000)MATHCrossRefGoogle Scholar
  23. 23.
    Vaishnavi, P., Cant, R.S.: Mechanism of induced turbulence through buoyancy suppression in premixed turbulent combustion. Proc. of 2nd European Combustion Meeting, Louvain-la-Neuve, Belgium (2005)Google Scholar
  24. 24.
    Poinsot, T., Echekki, T., Mungal, M.: A study of the laminar flame tip and implications for turbulent premixed combustion. Combust. Sci. Technol. 81(1–3), 45–73 (1992)CrossRefGoogle Scholar
  25. 25.
    Rutland, C., Trouvé, A.: Direct simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)CrossRefGoogle Scholar
  26. 26.
    Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inflow-outflow configuration. Combust. Flame. 137, 129–147 (2004)CrossRefGoogle Scholar
  27. 27.
    Chakraborty, N., Cant, R.S.: Influence of Lewis number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime. Phys. Fluids. 17, 105105 (2005)CrossRefGoogle Scholar
  28. 28.
    Treurniet, T.C., Nieuwstadt, F.T.M., Boersma, B.J.: Direct Numerical Simulation of homogeneous turbulence in combination with premixed combustion at low Mach number modeled by the G-equation. J. Fluid Mech. 565, 25–62 (2006)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and the thin reaction zones. Phys. Fluids 19, 105109 (2007)CrossRefGoogle Scholar
  30. 30.
    Chakraborty, N., Cant, R.S.: Effects of Lewis number on turbulent scalar transport and its modelling in turbulent premixed flames. Combust. Flame. 156, 1427–1444 (2009)CrossRefGoogle Scholar
  31. 31.
    Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)MATHGoogle Scholar
  32. 32.
    Tullis, S., Cant, R.S.: Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 29, 2097–2104 (2002)CrossRefGoogle Scholar
  33. 33.
    Swaminathan, N., Bray, K.N.C.: Effects of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame. 143, 549–565 (2005)CrossRefGoogle Scholar
  34. 34.
    Bray, K.N.C., Swaminathan, N.: Scalar dissipation rate and flame surface density in premixed turbulent combustion. Comptes Rendus Mechanique. 334, 466–473 (2006)MATHCrossRefGoogle Scholar
  35. 35.
    Rogerson, J.W., Swaminathan, N.: Correlation between dilatation and scalar dissipation in turbulent premixed flames. Proc. 3rd European Combust. Meeting (2007)Google Scholar
  36. 36.
    Chakraborty, N., Rogerson, J.W., Swaminathan, N.: A-Priori assessment of closures for scalar dissipation rate transport in turbulent premixed flames using direct numerical simulation. Phys. Fluids 20, 045106 (2008)CrossRefGoogle Scholar
  37. 37.
    Kolla, H., Rogerson, J.W., Chakraborty, N., Swaminathan, N.: Scalar dissipation rate modelling and its validation. Combust. Sci. Technol. 181, 518–535 (2009)CrossRefGoogle Scholar
  38. 38.
    Chakraborty, N., Klein, M.: A Priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20, 085108 (2008)CrossRefGoogle Scholar
  39. 39.
    Wray, A.A.: Minimal storage time advancement schemes for spectral methods, Report No. MS 202 A-1, NASA Ames Research Center, California (1990)Google Scholar
  40. 40.
    Poinsot, T., Lele, S.K.: Boundary conditions for direct simulation of compressible viscous flows. J. Comp. Physiol. 101, 104–129 (1992)MathSciNetMATHGoogle Scholar
  41. 41.
    Jenkins, K.W., Cant, R.S.: DNS of turbulent flame kernels. In: Liu, C., Sakell, L., Beautner, T. (eds.) Proc. Second AFOSR Conf. on DNS and LES, pp. 192–202. Kluwer Academic Publishers (1999)Google Scholar
  42. 42.
    Rogallo, R.S.: Numerical experiments in homogeneous turbulence. NASA TM81315, NASA Ames Research Center, California (1981)Google Scholar
  43. 43.
    Batchelor, G.K., Townsend, A.A.: Decay of turbulence in final period. Proc. R. Soc. Lond. A 194, 527–542 (1948)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia, USA (2001)Google Scholar
  45. 45.
    Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRefGoogle Scholar
  46. 46.
    Peters, N., Terhoeven, P., Chen, J.H., Echekki, T.: Statistics of flame displacement speeds from computations of 2-D unsteady methane-air flames. Proc. Combust. Inst. 27, 833–839 (1998)Google Scholar
  47. 47.
    Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for Large Eddy Simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)Google Scholar
  48. 48.
    Bray, K.N.C., Libby, P.A., Moss, J.B.: Unified modelling approach for premixed turbulent combustion – Part I: general formulation. Combust. Flame. 61, 87–102 (1985)CrossRefGoogle Scholar
  49. 49.
    Veynante, D., Poinsot, T.J.: Effects of pressure gradients on turbulent premixed flames. J. Fluid Mech. 353, 83–114 (1997)MATHCrossRefGoogle Scholar
  50. 50.
    Chakraborty, N., Cant, R.S.: Effects of Lewis number on scalar transport in turbulent premixed flames. Phys. Fluids 21, 035110 (2009)CrossRefGoogle Scholar
  51. 51.
    Chakraborty, N., Cant, R.S.: Physical insight and modelling for Lewis number effects on turbulent heat and mass transport in turbulent premixed flames. Numer. Heat Transf. A 55(8), 762–779 (2009)CrossRefGoogle Scholar
  52. 52.
    Launder, B.L., Reece, G.J., Rodi, W.J.: Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)MATHCrossRefGoogle Scholar
  53. 53.
    Bray, K.N.C., Champion, M., Libby, P.A.: Premixed flames in stagnating turbulence part IV: a new theory for the Reynolds stresses and Reynolds fluxes applied to impinging flows. Combust. Flame 120, 1–18 (2000)CrossRefGoogle Scholar
  54. 54.
    Domingo, P., Bray, K.N.C.: Laminar flamelet expressions for pressure fluctuation terms in second moment models of premixed turbulent combustion. Combust. Flame 121, 555–574 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nilanjan Chakraborty
    • 1
  • Mohit Katragadda
    • 1
  • R. Stewart Cant
    • 2
  1. 1.Department of EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.Engineering DepartmentCambridge UniversityCambridgeUK

Personalised recommendations