Flow, Turbulence and Combustion

, Volume 86, Issue 2, pp 179–206 | Cite as

A Rapid and Accurate Switch from RANS to LES in Boundary Layers Using an Overlap Region

  • Michael Shur
  • Philippe R. Spalart
  • Michael Strelets
  • Andrey Travin
Article

Abstract

An efficient recycling algorithm is developed for injecting resolved turbulent content in a boundary layer as it switches from a Reynolds Averaged Navier-Stokes (RANS) type treatment to a Large Eddy Simulation (LES) type treatment inside a generalized Detached-Eddy Simulation (DES). The motivation is to use RANS in the thinnest boundary-layer area, following the original argument in favour of DES, and LES in the thicker boundary-layer areas especially approaching separation, to improve accuracy and possibly obtain unsteady outputs. The algorithm relies on an overlap of the RANS and LES domains and, therefore, the availability of both RANS and LES solutions in the recycling region, which is about 5 boundary-layer thicknesses long. This permits a smooth transfer of the turbulent stresses from this section to the LES inflow. The continuity of the skin-friction distribution is very good, reflecting the excellent viability of the resolved turbulence. The approach is validated in a flat-plate boundary layer and an airfoil near stall, with mild pressure gradient near the interface, and then applied to the compressible flow over an idealized airliner windshield wiper. The pressure fluctuations at reattachment are 12dB more intense than under a simple boundary layer at the same speed, and the output contains all the quantities needed to calculate the transmission of sound through the glass.

Keywords

RANS-LES coupling IDDES Inflow turbulent content Recycling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Spalart, P.R., Jou, W.-H., Strelets, M., Allmaras, S.R.: Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z. (eds.) Advances in DNS/LES, pp. 137–147. Greyden, Columbus (1997)Google Scholar
  2. 2.
    Spalart, P.R.: Detached-Eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefGoogle Scholar
  3. 3.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulation. Annu. Rev. Fluid Mech. 34, 349–374 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Piomelli, U.: Wall-layer models for large-eddy simulation. Prog. Aerosp. Sci. 44, 437–446 (2008)CrossRefGoogle Scholar
  5. 5.
    Leschziner, M.A., Li, N., Tessicini, F.: Computational methods combining eddy simulation with approximate wall-layer models for predicting separated turbulent flows. ERCOFTAC Bulletin. 72 (2007)Google Scholar
  6. 6.
    Fröhlich, J., von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRefGoogle Scholar
  7. 7.
    Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)CrossRefGoogle Scholar
  8. 8.
    Batten, P., Goldberg, U., Chakravarthy, S.: LNS—an approach towards embedded LES, AIAA Paper 2002-0427 (2002)Google Scholar
  9. 9.
    Batten, P., Goldberg, U., Chakravarthy, S.: Interfacing statistical turbulence closures with large-eddy simulation. AIAA J. 42, 485–492 (2004)CrossRefGoogle Scholar
  10. 10.
    Davidson, L., Billson, M.: Hybrid LES/RANS using synthesized turbulence for forcing in the interface. Int. J. Heat Fluid Flow 28, 1028–1042 (2006)CrossRefGoogle Scholar
  11. 11.
    Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A synthetic-eddy-method for generating inflow conditions for large-eddy simulation. Int. J. Heat Fluid Flow 27, 585–593 (2006)CrossRefGoogle Scholar
  12. 12.
    Mathey, F., Cokljat, D., Bertoglio, J.P., Sergent, E.: Specification of inlet boundary condition using vortex method. In: Hanjalic, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer 4. Begell House Inc. (2003)Google Scholar
  13. 13.
    Lund, T.S., Wu, X., Squires, K.D.: Generation of turbulent inflow data for spatially-developing boundary layer simulations. J. Comput. Phys. 140, 233–258 (1998)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Spalart, P.R., Strelets, M.Kh., Travin, A.K.: Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Int. J. Heat Fluid Flow 27, 902–910 (2006)CrossRefGoogle Scholar
  15. 15.
    Spalart, P.R., Allmaras, S.R.: A one-equation turbulence model for aerodynamic flows. La Rech. Aerospatiale. 1, 5–21 (1994)Google Scholar
  16. 16.
    Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.Kh., Travin, A.K.: A new version of detached-Eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)MATHCrossRefGoogle Scholar
  17. 17.
    Shur, M.L., Spalart, P.R., Strelets, M.Kh., Travin, A.K.: Improvement of delayed detached-Eddy simulation for LES with wall modeling. Int. J. Heat Fluid Flow 29, 1638–1649 (2006)CrossRefGoogle Scholar
  18. 18.
    Gleyzes, C., Capbern, P.: Experimental study of two AIRBUS-ONERA airfoils in near stall conditions. Aerosp. Sci. Technol. 7, 439–449 (2003)CrossRefGoogle Scholar
  19. 19.
    LESFOIL: Large-Eddy Simulation of Flow around a High Lift Airfoil. Davidson, L., Cokljat, D., Fröhlich, J., Lescziner, M.A., Mellen, C., Rodi, W. (eds.) Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 83. Springer, Berlin (2003)Google Scholar
  20. 20.
    Nolin, G., Mary, I.: Test Case 06: A-airfoil. http://cfd.mace.manchester.ac.uk/desider/private/meeting-docs/file_meet-115287900506_ONERA.tar (2007). Accessed 28 August 2010
  21. 21.
    Strelets, M.: Detached Eddy Simulation of massively separated flows. AIAA Paper 2001-0879 (2001)Google Scholar
  22. 22.
    Rogers, S.E., Kwak, D.: An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations. AIAA Paper 1988-2583-CP (1988)Google Scholar
  23. 23.
    Roe, P.L.: Approximate Rieman solvers, parameter vectors and difference schemes. J. Comput. Phys. 46, 357–378 (1981)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Michael Shur
    • 1
  • Philippe R. Spalart
    • 2
  • Michael Strelets
    • 1
  • Andrey Travin
    • 1
  1. 1.New Technologies and ServicesSt.-PetersburgRussia
  2. 2.Boeing Commercial AirplanesSeattleUSA

Personalised recommendations