Flow, Turbulence and Combustion

, Volume 86, Issue 3–4, pp 313–341 | Cite as

New Perspectives on Turbulent Combustion: Multi-Parameter High-Speed Planar Laser Diagnostics

  • Benjamin Böhm
  • Christof Heeger
  • Robert L. Gordon
  • Andreas Dreizler


Over the past three decades laser combustion diagnostics have guided an improved understanding of turbulent combustion processes. Until recently, this was based on statistically independent sampling using sampling rates much slower than typical integral time-scales of turbulent flames. Recent developments in laser and camera technology enabled an increase in sampling rates by more than three orders of magnitudes. Using these new instruments for particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) at high sampling rates (high-speed diagnostics) allowed the resolution of integral time-scales of turbulent flames. This statistically dependent sampling is increasingly used to temporally track transients in turbulent combustion, such as flame extinction, ignition, flashback and cycle-to-cycle variations in IC engines. The simultaneous application of flow and scalar field measurements makes insights into these transients possible that were not when using statistically independent sampling with low data acquisition rates. Conditioning on distinct flame features with high-speed diagnostics enables the inclusion of time as an additional dimension. This paper reviews the emerging field of multi-parameter, high-speed, planar laser diagnostics in combustion applications. The benefit of high data acquisition rates in turbulent combustion applications is discussed in detail as well as requirements and constraints imposed by the time-scales of the investigated phenomenon are addressed. Recent developments in laser and detector hardware are highlighted, as these are the limiting factors of the sampling rate. Finally, multi-parameter high-speed measurements in combustion are summarized, with a few examples discussed in more detail.


High-speed diagnostics Planar laser diagnostics Simultaneous measurements Turbulent combustion  PIV PLIF Review 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohse-Höinghaus, K., Jeffries, J.B. (eds.): Applied Combustion Diagnostics. Taylor & Francis, New York (2002)Google Scholar
  2. 2.
    Raffel, M., Willert, C., Kompenhans, J.: Particle Image Velocimetry: A Practical Guide. Springer, Berlin (1998)Google Scholar
  3. 3.
    Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)CrossRefGoogle Scholar
  4. 4.
    Schulz, C., Sick, V.: Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Progr. Energ. Combust. Sci. 31(1), 75–121 (2005)CrossRefGoogle Scholar
  5. 5.
    Tropea, C.F., John, F., Yarin, A. (eds.): Springer Handbook of Experimental Fluid Mechanics. Springer, Berlin (2007)Google Scholar
  6. 6.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, vol. 770. Cambridge (2000)Google Scholar
  7. 7.
    Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135(1–2), 185–190 (2003)CrossRefGoogle Scholar
  8. 8.
    Seffrin, F., Geyer, D., Dreizler, A.: Flow field studies of a new series of turbulent premixed stratified flames. Combust. Flame 157(2), 384–396 (2010)CrossRefGoogle Scholar
  9. 9.
    Xiong, Y., Roberts, W.L., Drake, M.C., Fansler, T.D.: Investigation of premixed flame-kernel/vortex interactions via high-speed imaging. Combust. Flame 126(4), 1827–1844 (2001)CrossRefGoogle Scholar
  10. 10.
    Nauert, A., Petersson, P., Linne, M., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: conditions close to flashback. Exp. Fluids 43(1), 89–100 (2007)CrossRefGoogle Scholar
  11. 11.
    Ng, W.B., Clough, E., Syed, K.J., Zhang, Y.: The combined investigation of the flame dynamics of an industrial gas turbine combustor using high-speed imaging and an optically integrated data collection method. Meas. Sci. Technol. 15(11), 2303–2309 (2004)CrossRefGoogle Scholar
  12. 12.
    Elsinga, G.E., Scarano, F., Wieneke, B., von Oudheusden, B.W.: Tomographic particle image velocimetry. Exp. Fluids 41(6), 933–947 (2006)CrossRefGoogle Scholar
  13. 13.
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(35), 35 (2004)CrossRefGoogle Scholar
  14. 14.
    Goryntsev, D., Sadiki, A., Klein, M., Janicka, J.: Large eddy simulation based analysis of the effects of cycle-to-cycle variations on air–fuel mixing in realistic DISI IC-engines. Proc. Combust. Inst. 32, 2759–2766 (2009)CrossRefGoogle Scholar
  15. 15.
    Kaminski, C.F., Hult, J., Aldén, M.: High repetition rate planar laser-induced fluorescence of OH in a turbulent non-premixed flame. Appl. Phys. B 68(4), 757–760 (1999)CrossRefGoogle Scholar
  16. 16.
    Upatnieks, A., Laberteaux, K., Ceccio, S.L.: A kilohertz frame rate cinemagraphic PIV system for laboratory-scale turbulent and unsteady flows. Exp. Fluids 32, 87–98 (2002)CrossRefGoogle Scholar
  17. 17.
    Wang, G.H., Clemens, N.T., Varghese, P.L.: Two-point, high-repetition rate Rayleigh thermometry in flames: techniques to correct for apparent dissipation induced by noise. Appl. Opt. 44, 6741–6751 (2005)CrossRefGoogle Scholar
  18. 18.
    Wäsle, J., Winkler, A., Sattelmayer, T.: Spatial coherence of the heat release fluctuations in turbulent jet and swirl flames. Flow Turbul. Combust. 75(1–4), 29–50 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Smith, J.D., Sick, V.: Crank-angle resolved imaging of biacetyl laser-induced fluorescence in an optical internal combustion engine. Appl. Phys. B 81(5), 579–584 (2005)CrossRefGoogle Scholar
  20. 20.
    Böhm, B., Heeger, C., Boxx, I., Meier, W., Dreizler, A.: Time-resolved conditioned flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)CrossRefGoogle Scholar
  21. 21.
    Boxx, I., Heeger, C., Gordon, R., Böhm, B., Aigner, M., Dreizler, A., Meier, W.: Simultaneous three component PIV/OH PLIF measurements of a lifted, C3H8-argon diffusion flame at 1.5 kHz repetition rate. Proc. Combust. Inst. 32, 905–912 (2009)CrossRefGoogle Scholar
  22. 22.
    Konle, M., Kiesewetter, F., Sattelmayer, T.: Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback. Exp. Fluids 44, 529–538 (2008)CrossRefGoogle Scholar
  23. 23.
    Fajardo, C., Sick, V.: Development of a high-speed UV particle image velocimetry technique and application for measurements in internal combustion engines. Exp. Fluids 46(1), 43–53 (2009)CrossRefGoogle Scholar
  24. 24.
    Müller, S.H.R., Böhm, B., Gleißner, M., Grzeszik, R., Arndt, S., Dreizler, A.: Flow field measurements in an optically accessible, direct-injection spray-guided internal combustion engine using high-speed PIV. Exp. Fluids 48(2), 281–290 (2010)CrossRefGoogle Scholar
  25. 25.
    Steinberg, A.M., Driscoll, J.F., Ceccio, S.L.: Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp. Fluids 44(6), 985–999 (2008)CrossRefGoogle Scholar
  26. 26.
    Wang, G.H., Clemens, N.T., Varghese, P.L.: High-repetition rate measurements of temperature and thermal dissipation in a non-premixed turbulent jet flame. Proc. Combust. Inst. 30, 691–699 (2005)CrossRefGoogle Scholar
  27. 27.
    Renfro, M.W., Guttenfelder, W.A., King, G.B., Laurendeau, N.M.: Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: OH. Combust. Flame 123(3), 389–401 (2000)CrossRefGoogle Scholar
  28. 28.
    Bäuerle, B., Hoffmann, F., Behrendt, F., Warnatz, J.: Detection of hot spots in the end gas of an internal combustion engine using two-dimensional LIF of formaldehyde. Proc. Combust. Inst. 25, 135–141 (1994)Google Scholar
  29. 29.
    Schiessl, R., Pixner, P., Dreizler, A., Maas, U.: Formaldehyde formation in the endgas of Otto engines: Numerical simulations and quantitative concentration measurements. Combust. Sci. Technol. 149, 339–360 (1999)CrossRefGoogle Scholar
  30. 30.
    Wu, P.F., Lempert, W.R., Miles, R.B.: Megahertz pulse-burst laser and visualization of shock-wave/boundary-layer interaction in a Mach 2.5 wind tunnel. AIAA J. 38(4), 672–679 (2000)CrossRefGoogle Scholar
  31. 31.
    Jiang, N.B., Webster, M.C., Lempert, W.R.: Advances in generation of high-repetition-rate burst mode laser output. Appl. Opt. 48(4), B23–B31 (2009)CrossRefGoogle Scholar
  32. 32.
    Li, D.J., Ma, Z., Haas, R., Schell, A., Simon, J., Diart, R., Shi, P., Hu, P.X., Loosen, P., Du, K.M.: Diode-pumped efficient slab laser with two Nd:YLF crystals and second-harmonic generation by slab LBO. Opt. Lett. 32(10), 1272–1274 (2007)CrossRefGoogle Scholar
  33. 33.
    Gordon, R.L., Heeger, C., Dreizler, A.: High-speed mixture fraction imaging. Appl. Phys. B 96(4), 745–748 (2009)CrossRefGoogle Scholar
  34. 34.
    Smith, J.D., Sick, V.: Quantitative, dynamic fuel distribution measurements in combustion-related devices using laser-induced fluorescence imaging of biacetyl in iso-octane. Proc. Combust. Inst. 31, 747–755 (2007)CrossRefGoogle Scholar
  35. 35.
    Paa, W., Müller, D., Stafast, H., Triebel, W.: Flame turbulence recorded at 1 kHz using planar laser induced fluorescence upon hot band excitation of OH radicals. Appl. Phys. B 86, 1–5 (2007)CrossRefGoogle Scholar
  36. 36.
    Lempert, W.R., Wu, P.F., Miles, R.B., Zhang, B., Lowrance, J.L.: Pulse-burst laser system for high speed flow diagnostics. AIAA Aerospace Science Meeting, vol. 34. Reno (1996)Google Scholar
  37. 37.
    Etoh, T.G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A.J.P., Ruckelhausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T., Takano, Y.: An image sensor which captures 100 consecutive frames at 1,000,000 frames/s. IEEE Trans. Electron Devices 50, 144–151 (2003)CrossRefGoogle Scholar
  38. 38.
    Janus, B., Dreizler, A., Janicka, J.: Experimental study on stabilization of lifted swirl flames in a model GT combustor. Flow Turbul. Combust. 75, 293–315 (2005)CrossRefMATHGoogle Scholar
  39. 39.
    Barbosa, S., Scouflaire, P., Ducruix, S.: Time resolved flow field, flame structure and acoustic characterization of a staged multi-injection burner. Proc. Combust. Inst. 32(2), 2965–2972 (2009)CrossRefGoogle Scholar
  40. 40.
    Sick, V., Drake, M.C., Fansler, T.D.: High-speed imaging for direct-injection gasoline engine research and development. Exp. Fluids (2010). doi: 10.1007/s00348-010-0891-3 Google Scholar
  41. 41.
    Renfro, M.W., Klassen, M.S., King, G.B., Laurendeau, N.M.: Time-series measurements of CH concentration in turbulent CH4/air flames by use of picosecond time-resolved laser-induced fluorescence. Opt. Lett. 22(3), 175–177 (1997)CrossRefGoogle Scholar
  42. 42.
    Jiayao, Z., Venkatesan, K.K., King, G.B., Laurendeau, N.M., Renfro, M.W.: Two-point time-series measurements of minor-species concentrations in a turbulent nonpremixed flame. Opt. Lett. 30(23), 3144–3146 (2005)CrossRefGoogle Scholar
  43. 43.
    Meyer, T.R., Roy, S., Anderson, T.N., Miller, J.D., Katta, V.R., Lucht, R.P., Gord, J.R.: Measurements of OH mole fraction and temperature up to 20 kHz by using a diode-laser-based UV absorption sensor. Appl. Opt. 44(31), 6729–6740 (2005)CrossRefGoogle Scholar
  44. 44.
    Roy, S., Kulatilaka, W.D., Richardson, D.R., Lucht, R.P., Gord, J.R.: Gas-phase single-shot thermometry at 1 kHz using fs-CARS spectroscopy. Opt. Lett. 34(24), 3857–3859 (2009)CrossRefGoogle Scholar
  45. 45.
    Dreizler, A., Lindenmaier, S., Maas, U., Hult, J., Aldén, M., Kaminski, C.F.: Characterization of a spark ignition system by planar laser-induced fluorescence of OH at high repetition rates and comparison with chemical kinetic calculations. Appl. Phys. B 70(2), 287–294 (2000)CrossRefGoogle Scholar
  46. 46.
    Kaminski, C.F., Hult, J., Aldén, M., Lindenmaier, S., Dreizler, A., Maas, U., Baum, M.: Spark iginition of turbulent methane/air mixtures revealed by time resolved planar laser-induced fluorescence and direct numerical simulations. Proc. Combust. Inst. 29, 399–405 (2000)CrossRefGoogle Scholar
  47. 47.
    Hult, J., Meier, U., Meier, W., Harvey, A., Kaminski, C.F.: Experimental analysis of flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements. Proc. Combust. Inst. 30, 701–709 (2005)CrossRefGoogle Scholar
  48. 48.
    Hult, J., Richter, M., Nygren, J., Aldén, M., Hultqvist, A., Christensen, M., Johansson, B.: Application of a high-repetition-rate laser diagnostic system for single-cycle-resolved imaging in internal combustion engines. Appl. Opt. 41, 5002–5014 (2002)CrossRefGoogle Scholar
  49. 49.
    Jiang, N., Lempert, W.R., Switzer, G.L., Meyer, T.R., Gord, J.R.: Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics. Appl. Opt. 47(1), 64–71 (2008)CrossRefGoogle Scholar
  50. 50.
    Miller, J.D., Slipchenko, M., Meyer, T.R., Jiang, N.B., Lempert, W.R., Gord, J.R.: Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator. Opt. Lett. 34(9), 1309–1311 (2009)CrossRefGoogle Scholar
  51. 51.
    Cundy, M.E., Sick, V.: Hydroxyl radical imaging at kHz rates using a frequency-quadrupled Nd:YLF laser. Appl. Phys. B 96(2–3), 241–245 (2009)CrossRefGoogle Scholar
  52. 52.
    Kittler, C., Dreizler, A.: Cinematographic imaging of hydroxyl radicals in turbulent flames by planar laser-induced fluorescence up to 5 kHz repetition rate. Appl. Phys. B 89, 163–166 (2007)CrossRefGoogle Scholar
  53. 53.
    Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23, 261–304 (1991)CrossRefGoogle Scholar
  54. 54.
    Williams, T.C., Hargrave, G.K., Halliweel, N.A.: The development of high-speed particle image velocimetry (20 kHz) for large eddy simulation code refinement in bluff body flows. Exp. Fluids 35, 85–91 (2003)CrossRefGoogle Scholar
  55. 55.
    Wernet, M.P.: Temporally resolved PIV for space–time correlations in both cold and hot jet flows. Meas. Sci. Technol. 18, 1387–1403 (2007)CrossRefGoogle Scholar
  56. 56.
    Towers, D.P., Towers, C.E.: Cyclic variability measurements of incylinder engine flows using high-speed particle image velocimetry. Meas. Sci. Technol. 15, 1917–1925 (2004)CrossRefGoogle Scholar
  57. 57.
    Jarvis, S., Justham, T., Clarke, A., Garner, C.P., Hargrave, G.K., Halliwell, N.A.: Time resolved digital PIV measurements of flow field cyclic variation in an optical IC engine. In: Second International Conference on Optical and Laser Diagnostics, vol. 45, pp. 38–45 (2006)Google Scholar
  58. 58.
    Druault, P., Guibert, P., Alizon, F.: Use of proper orthogonal decomposition for time interpolation from PIV data. Exp. Fluids 39, 1009–1023 (2005)CrossRefGoogle Scholar
  59. 59.
    Fajardo, C.M., Sick, V.: Flow field assessment in a fired spray-guided spark-ignition direct-injection engine based on UV particle image velocimetry with sub crank angle resolution. Proc. Combust. Inst. 31, 3023–3031 (2007)CrossRefGoogle Scholar
  60. 60.
    Heeger, C., Böhm, B., Ahmed, S.F., Gordon, R., Boxx, I., Meier, W., Dreizler, A., Mastorakos, E.: Statistics of relative and absolute velocities of turbulent non-premixed edge flames following spark ignition. Proc. Combust. Inst. 32, 2957–2964 (2009)CrossRefGoogle Scholar
  61. 61.
    Boxx, I., Stöhr, M., Carter, C., Meier, W.: Sustained multi-kHz flame-front and 3-component velocity-field measurements for the study of turbulent flames. Appl. Phys. B 95, 23–29 (2009)CrossRefGoogle Scholar
  62. 62.
    Boxx, I., Stöhr, M., Carter, C., Meier, W.: Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Combust. Flame 157(8), 1510–1525 (2010)CrossRefGoogle Scholar
  63. 63.
    Upatnieks, A., Driscoll, J., Rasmussen, C., Ceccio, S.: Liftoff of turbulent jet flames—assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259–272 (2004)CrossRefGoogle Scholar
  64. 64.
    Heeger, C., Gordon, R.L., Tummers, M.J., Sattelmayer, T., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids (2010). doi: 10.1007/s00348-010-0886-0 Google Scholar
  65. 65.
    Fajardo, C.M., Smith, J.D., Sick, V.: Sustained simultaneous high-speed imaging of scalar and velocity fields using a single laser. Appl. Phys. B 85(1), 25–30 (2006)CrossRefGoogle Scholar
  66. 66.
    Peterson, B., Sick, V.: Simultaneous flow field and fuel concentration imaging at 4.8 kHz in an operating engine. Appl. Phys. B 97(4), 887–895 (2009)CrossRefGoogle Scholar
  67. 67.
    Lemaire, A., Meyer, T.R., Zähringer, K., Gord, J.R., Rolon, J.C.: PIV/PLIF investigation of two-phase vortex–flame interactions: effects of vortex size and strength. Exp. Fluids 36(1), 36–42 (2004)CrossRefGoogle Scholar
  68. 68.
    Böhm, B., Geyer, D., Dreizler, A., Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2006)CrossRefGoogle Scholar
  69. 69.
    Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)CrossRefGoogle Scholar
  70. 70.
    Ashurst, W.M.T.: Flame propagation along a vortex: the Baroclinic push. Combust. Sci. Technol. 112, 175–185 (1996)CrossRefGoogle Scholar
  71. 71.
    Kiesewetter, F., Konle, M., Sattelmayer, T.: Analysis of combustion induced vortex breakdown driven flame flashback in a premix burner with cylindrical mixing zone. ASME J. Eng. Gas Turbine Power 129, 929–936 (2007)CrossRefGoogle Scholar
  72. 72.
    Konle, M., Sattelmayer, T.: Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown. Exp. Fluids 57(4–5), 627–635 (2009)CrossRefGoogle Scholar
  73. 73.
    Burmberger, S., Hirsch, C., Sattelmayer, T.: Designing a radial swirler vortex breakdown burner. Proc. ASME Turbo Expo, Barcelona, Spain (2006)Google Scholar
  74. 74.
    Fansler, T.D., Drake, M.C., Böhm, B.: High-speed Mie-scattering diagnostics for spray-guided gasoline engine development, vol. 8. Internationales Symposium für Verbrennungsdiagnostik, Baden-Baden (2008)Google Scholar
  75. 75.
    Lawn, C.: Lifted flames on fuel jets in co-flowing air. Progr. Energ. Combust. Sci. 35, 1–30 (2009)CrossRefGoogle Scholar
  76. 76.
    Buckmaster, J.: Edge-flames. Progr. Energ. Combust. Sci. 28(5), 435–475 (2002)CrossRefGoogle Scholar
  77. 77.
    Lyons, K.M.: Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Progr. Energ. Combust. Sci. 33(2), 211–231 (2007)CrossRefGoogle Scholar
  78. 78.
    Kelman, J., Eltobaji, A., Masri, A.: Laser imaging in the stabilization region of turbulent lifted flames. Combust. Sci. Technol. 135, 117–134 (1998)CrossRefGoogle Scholar
  79. 79.
    Boxx, I., Heeger, C., Gordon, R., Böhm, B., Dreizler, A., Meier, W.: On the importance of temporal context in interpretation of flame discontinuities. Combust. Flame 156, 269–271 (2009)CrossRefGoogle Scholar
  80. 80.
    Mizobuchi, Y., Shinio, J., Ogawa, S., Takeno, T.: A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30, 611–619 (2005)CrossRefGoogle Scholar
  81. 81.
    Schefer, R.W., Namazian, M., Filtopoulos, E.E.J., Kelly, J.: Temporal evolution of turbulence/chemistry interactions in lifted, turbulent-jet flames. Proc. Combust. Inst. 25, 1223–1231 (1994)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Benjamin Böhm
    • 1
  • Christof Heeger
    • 1
  • Robert L. Gordon
    • 2
  • Andreas Dreizler
    • 1
  1. 1.Center of Smart Interfaces, Department of Mechanical Engineering, Inst. Reactive Flows and DiagnosticsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations