Flow, Turbulence and Combustion

, Volume 85, Issue 3–4, pp 677–688 | Cite as

Grid Resolution Effects on VSFMDF/LES

Submitted for the Special Issue Dedicated to S. B. Pope
  • Mehdi B. NikEmail author
  • Server L. Yilmaz
  • Mohammad Reza H. Sheikhi
  • Peyman Givi


The grid dependence of LES/VSFMDF is studied on a series of grids with progressively increased resolution reaching over 10 million grids for simulation of a turbulent piloted nonpremixed methane jet flame (Sandia D). In VSFMDF, the effects of the subgrid scale chemical reaction and convection appear in closed forms. The modeled transport equation for the VSFMDF is solved by a hybrid finite-difference/Monte Carlo scheme. A flamelet model is employed to relate the instantaneous composition to the mixture fraction. The simulated results are assessed via comparison with laboratory data. In addition, the dependence of predicted statistics on the grid size of the simulation is studied. The first order moments converge for the finest grid, but the higher order statistics including the PDFs are more sensitive to the grid resolution.


Large eddy simulation Filter density function Reacting flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pope, S.B.: Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990)Google Scholar
  2. 2.
    Givi, P.: Model free simulations of turbulent reactive flows. Prog. Energy Combust. Sci. 15, 1–107 (1989)CrossRefGoogle Scholar
  3. 3.
    Givi, P.: Filtered density function for subgrid scale modeling of turbulent combustion. AIAA J. 44(1), 16–23 (2006)CrossRefGoogle Scholar
  4. 4.
    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)zbMATHCrossRefGoogle Scholar
  6. 6.
    Garrick, S.C., Jaberi, F.A., Givi, P.: Large eddy simulation of scalar transport in a turbulent jet flow. In: Knight, D., Sakell, L. (eds.) Recent Advances in DNS and LES, Fluid Mechanics and its Applications, vol. 54, pp. 155–166. Kluwer Academic Publishers, The Netherlands (1999)Google Scholar
  7. 7.
    James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. Combust. Flame 123, 465–487 (2000)CrossRefGoogle Scholar
  8. 8.
    Zhou, X.Y., Pereira, J.C.F.: Large eddy simulation (2D) of a reacting plan mixing layer using filtered density function. Flow Turbul. Combust. 64, 279–300 (2000)zbMATHCrossRefGoogle Scholar
  9. 9.
    Zhou, X., Mahalingam, S.: A flame surface density based model for large eddy simulation of turbulent nonpremixed combustion. Phys. Fluids 14(11), 77–80 (2002)CrossRefGoogle Scholar
  10. 10.
    Heinz, S.: On Fokker-Planck equations for turbulent reacting flows. Part 2. Filter density function for large eddy simulation. Flow Turbul. Combust. 70(1–4), 153–181 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Cha, C.M., Troullet, P.: A subgrid-scale mixing model for large-eddy simulations of turbulent reacting flows using the filtered density function. Phys. Fluids 15(6), 1496–1504 (2003)CrossRefGoogle Scholar
  12. 12.
    Sheikhi, M.R.H., Drozda, T.G., Givi, P., Jaberi, F.A., Pope, S.B.: Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D). Proc. Combust. Inst. 30, 549–556 (2005)CrossRefGoogle Scholar
  13. 13.
    Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/lagrangian filtered density function approach for simulating turbulent combustion. Combust. Flame 143(1–2), 56–78 (2005)CrossRefGoogle Scholar
  14. 14.
    Raman, V., Pitsch, H.: Large-Eddy simulation of a bluff-body-stabilized nonpremixed flame using a recursive filter-refinement procedure. Combust. Flame 142, 329–347 (2005)CrossRefGoogle Scholar
  15. 15.
    van Vliet, E., Derksen, J.J., van den Akker, H.E.A.: Turbulent mixing in a tubular reactor: assessment of an FDF/LES approach. AIChE J. 51(3), 725–739 (2005)CrossRefGoogle Scholar
  16. 16.
    Carrara, M.D., DesJardin, P.E.: A filtered mass density function approach to modeling separated two-phase flows using LES I: mathematical formulation. Int. J. Multiph. Flow 32, 365–384 (2006)zbMATHCrossRefGoogle Scholar
  17. 17.
    Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust. Flame 145(1–2), 88–104 (2006)CrossRefGoogle Scholar
  18. 18.
    Drozda, T.G., Sheikhi, M.R.H., Madnia, C.K., Givi, P.: Developments in formulation and application of the filtered density function. Flow Turbul. Combust. 78, 35–67 (2007)CrossRefGoogle Scholar
  19. 19.
    Jones, W.P., Navarro-Martinez, S., Röhl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. Proc. Combust. Inst. 31, 1765–1771 (2007)CrossRefGoogle Scholar
  20. 20.
    Jones, W.P., Navarro-Martinez, S.: Large eddy simulation of autoignition with a subgrid probability density function method. Combust. Flame 150, 170–187 (2007)CrossRefGoogle Scholar
  21. 21.
    James, S., Zhu, J., Anand, M.S.: Large eddy simulations of turbulent flames using the filtered density function model. Proc. Combust. Inst. 31, 1737–1745 (2007)CrossRefGoogle Scholar
  22. 22.
    Chen, J.Y.: A Eulerian PDF scheme for LES of nonpremixed turbulent combustion with secondorder accurate mixture fraction. Combust. Theor. Model. 11(5), 675–695 (2007)zbMATHCrossRefGoogle Scholar
  23. 23.
    McDermott, R., Pope, S.B.: A particle formulation for treating differential diffusion in filtered density function methods. J. Comput. Phys. 226(1), 947–993 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Raman, V., Pitsch, H.: A consistent LES/filtered-density function formulation for the simulation of turbulent flames with detailed chemistry. Proc. Combust. Inst. 31, 1711–1719 (2007)CrossRefGoogle Scholar
  25. 25.
    Afshari, A., Jaberi, F.A., Shih, T.I.P.: Large-eddy simulations of turbulent flows in an axisymmetric dump combustor. AIAA J. 46(7), 1576–1592 (2008)CrossRefGoogle Scholar
  26. 26.
    Drozda, T.G., Wang, G., Sankaran, V., Mayo, J.R., Oefelein, J.C., Barlow, R.S.: Scalar filtered mass density functions in nonpremixed turbulent jet flames. Combust. Flame 155(1–2), 54–69 (2008)CrossRefGoogle Scholar
  27. 27.
    Givi, P., Sheikhi, M.R.H., Drozda, T.G., Madnia, C.K.: Large scale simulation of turbulent combustion. Combust. Plasma Chem. 6(1), 1–9 (2008)Google Scholar
  28. 28.
    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14(3), 1196–1213 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Sheikhi, M.R.H., Drozda, T.G., Givi, P., Pope, S.B.: Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15(8), 2321–2337 (2003)CrossRefGoogle Scholar
  30. 30.
    Sheikhi, M.R.H., Givi, P., Pope, S.B.: Velocity-scalar filtered mass density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 19(9), 095196 1–21 (2007)CrossRefGoogle Scholar
  31. 31.
    Nik, M.B., Yilmaz, S.L., Givi, P., Sheikhi, M.R.H., Pope, S.B.: Simulation of sandia flame D using velocity-scalar filtered density function. AIAA J. 48(7), 1513–1522 (2010)Google Scholar
  32. 32.
    Nooren, P.A., Versiuis, M., Van der Meer, T.H., Barlow, R.S., Frank, J.H.: Raman-Rayleigh-LIF measurements of temperature and species concentrations in the delft piloted turbulent jet diffusion flame. Appl. Phys. B71, 95–111 (2000)CrossRefGoogle Scholar
  33. 33.
    Sandia National Laboratories, Combustion Research Facility website. (2003). Accessed 2 July 2010
  34. 34.
    Schneider, C., Dreizler, A., Janicka, J., Hassel, E.P.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135(1), 185–190 (2003)CrossRefGoogle Scholar
  35. 35.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)zbMATHGoogle Scholar
  36. 36.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows, 3rd edn. Springer-Verlag, New York, NY (2005)Google Scholar
  37. 37.
    Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York, NY (1981)zbMATHGoogle Scholar
  38. 38.
    Haworth, D.C., Pope, S.B.: Ageneralized Langevinmodel for turbulent flows. Phys. Fluids 29(2), 387–405 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Dreeben, T.D., Pope, S.B.: Probability density function and Reynolds-stress modeling of nearwall turbulent flows. Phys. Fluids 9(1), 154–163 (1997)CrossRefMathSciNetGoogle Scholar
  40. 40.
    O’Brien, E.E.: The probability density function (PDF) approach to reacting turbulent flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, Topics in Applied Physics, vol. 44, pp. 185–218. Springer-Verlag, Heidelberg (1980)Google Scholar
  41. 41.
    Wax, N.: Selected Papers on Noise and Stochastic Processes. Dover (1954)Google Scholar
  42. 42.
    Gardiner, C.W.: Handbook of Stochastic Methods. Springer-Verlag, New York, NY (1990)zbMATHGoogle Scholar
  43. 43.
    Madnia, C.K., Jaberi, F.A., Givi, P.: Large eddy simulation of heat and mass transport in turbulent flows. In: Minkowycz, W.J., Sparrow, E.M., Murthy, J.Y. (eds.) Handbook of Numerical Heat Transfer, 2nd edn, pp. 167–189. John Wiley & Sons, Inc., New York, NY (2006)Google Scholar
  44. 44.
    Kennedy, C.A., Carpenter, M.H.: Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397–433 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., et al.: PETSc Web page. (2009). Accessed 2 July 2010
  46. 46.
    Balay, S., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., et al.: PETSc users manual. Technical Report ANL-95/11-Revision 2.1.5, Argonne National Laboratory (2004)Google Scholar
  47. 47.
    Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press (1997)Google Scholar
  48. 48.
    Danaila, I., Boersma, B.J.: Direct numerical simulation of bifurcating jets. Phys. Fluids 12(5), 1255–1257 (2000)zbMATHCrossRefGoogle Scholar
  49. 49.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comp. Phys. 101, 104–129 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge, UK (2000)zbMATHCrossRefGoogle Scholar
  51. 51.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., et al.: Accessed 2 July 2010

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Mehdi B. Nik
    • 1
    Email author
  • Server L. Yilmaz
    • 2
  • Mohammad Reza H. Sheikhi
    • 3
  • Peyman Givi
    • 1
  1. 1.Department of Mechanical Engineering and Material ScienceUniversity of PittsburghPittsburghUSA
  2. 2.Center for Simulation and ModelingUniversity of PittsburghPittsburghUSA
  3. 3.Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA

Personalised recommendations