Flow, Turbulence and Combustion

, Volume 85, Issue 1, pp 73–93 | Cite as

In-Nozzle Measurements of a Turbulent Opposed Jet Using PIV

  • Benjamin BöhmEmail author
  • Oliver Stein
  • Andreas Kempf
  • Andreas Dreizler


Turbulent opposed jet burners are an excellent test case for combustion research and model development due to the burners’ compactness, relative simplicity, and the good optical access they provide. The flow-field in the flame region depends strongly on the turbulence generation inside the nozzles, so that realistic flow simulations can only be achieved if the flow inside the nozzles is represented correctly, which must be verified by comparison to suitable experimental data. This paper presents detailed particle image velocimetry (PIV) measurements of the flow issuing from the turbulence generating plates (TGP) inside a glass nozzle. The resulting data is analyzed in terms of first and second moments, time-series, frequency spectra and phase averages. The measurements show how individual high velocity jets emerging from the TGP interact and recirculation zones are formed behind the solid parts of the TGP. Vortex shedding is observed in the jet’s shear layer were high levels of turbulent kinetic energy are generated. Time series measurements revealed periodic pulsations of the individual jets and implied a coupling between adjacent jets. The peak frequencies were found to be a function of the Reynolds-number.


LES inflow data High-speed particle image velocimetry Large eddy simulation Turbulent opposed jet burner Turbulence generating plate Wind-tunnel turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10494_2010_9257_MOESM1_ESM.mpg (4.4 mb)
(MPG 4.41 mb).
10494_2010_9257_MOESM2_ESM.mpg (3.7 mb)
(MPG 3.73 mb).


  1. 1.
    Barbosa, S., Scouflairea, P., Ducruix, S.: Time resolved flow field, flame structure and acoustic characterization of a staged multi-injection burner. Proc. Combust. Inst. 32(2), 2965–2972 (2009)CrossRefGoogle Scholar
  2. 2.
    Böhm, B., Geyer, D., Dreizler, A., Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially-premixed turbulent opposed jet flames. Proc. Combust. Inst. 31, 709–718 (2007)CrossRefGoogle Scholar
  3. 3.
    Böhm, B., Brübach, J., Ertem, C., Dreizler, A.: Experiments for combustion LES validation. Flow Turbul. Combust. 80(4), 507–529 (2008)CrossRefGoogle Scholar
  4. 4.
    Böhm, B., Heeger, C., Boxx, I., Meier, W., Dreizler, A.: Time-Resolved conditional flow field statistics in extinguishing turbulent opposed jet flames using simultaneous highspeed PIV/OH-PLIF. Proc. Combust. Inst. 32, 1647–1654 (2009)CrossRefGoogle Scholar
  5. 5.
    Coppola, G., Coriton, B., Gomez, A.: Highly turbulent counterflow flames: a laboratory scale benchmark for practical systems. Combust. Flame 156, 1834–1843 (2009)CrossRefGoogle Scholar
  6. 6.
    di Mare, L., Klein, M., Jones, W.P., Janicka, J.: Synthetic turbulence inflow conditions for large-eddy-simulation. Phys. Fluids 18, 1–11 (2006)Google Scholar
  7. 7.
    Eckstein, J., Chen, J.Y., Chou, C.P., Janicka, J.: Modeling of turbulent mixing in opposed jet configuration: one-dimensional Monte Carlo probability density function simulation. Proc. Combust. Inst. 28, 141–148 (2000)CrossRefGoogle Scholar
  8. 8.
    Froud, D., O’Doherty, T., Syred, N.: Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust. Flame 100, 407–412 (1995)CrossRefGoogle Scholar
  9. 9.
    Geers, L.F.G., Tummers, M.J., Hanjalic, K.: PIV measurements in impinging jets at a high Reynolds number. In: TSFP, 2nd Int. Symp., Stockholm, Sweden (2001)Google Scholar
  10. 10.
    Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Turbulent opposed-jet flames: a critical benchmark experiment for combustion LES. Combust. Flame 143, 524–548 (2005)CrossRefGoogle Scholar
  11. 11.
    Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–689 (2005)CrossRefGoogle Scholar
  12. 12.
    Kataoka, K.: Impingement heat transfer augmentation due to large scale eddies. In: Proc. of the 9th Int, pp. 255–273. Heat Transfer Conference, Jerusalem, Israel (1990)Google Scholar
  13. 13.
    Keating, A., Piomelli, U., Balaras, E., Kaltenbach, H.-J.: A priori and a posteriori tests of inflow conditions for large eddy simulation. Phys. Fluids 16, 4696–4712 (2004)CrossRefADSGoogle Scholar
  14. 14.
    Kempf, A.: LES validation from experiments. Flow Turbul. Combust. 80(3), 351–373 (2007)CrossRefGoogle Scholar
  15. 15.
    Kempf, A., Forkel, H., Chen, J.-Y., Sadiki, A., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28, 35–40 (2000)CrossRefGoogle Scholar
  16. 16.
    Kempf, A., Klein, M., Janicka, J.: Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74, 67–84 (2005)Google Scholar
  17. 17.
    Kitajima, A., Ueda, T., Matsuo, A., Mizomoto, M.: A comprehensive examination of the structure and extinction of turbulent nonpremixed flames formed in a counterflow. Combust. Flame 121(1–2), 301–311 (2000)CrossRefGoogle Scholar
  18. 18.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comp. Phys. 186, 652–665 (2002)CrossRefADSGoogle Scholar
  19. 19.
    Korusoy, E., Whitelaw, J.H.: Opposed jets with small separations and their implications for the extinction of opposed flames. Exp. Fluids 31, 111–117 (2001)CrossRefGoogle Scholar
  20. 20.
    Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part I—nonreacting flow field. Combust. Flame 92, 377–395 (1993)CrossRefGoogle Scholar
  21. 21.
    Lindstedt, R.P., Luff, D.S., Whitelaw, J.H.: Velocity and strain-rate characteristics of opposed isothermal flows. Flow Turbul. Combust. 74, 169–194 (2005)CrossRefGoogle Scholar
  22. 22.
    Liu, R., King, D.S.-K.: Turbulent flow downstream of a perforated plate: sharp edged orifice versus finite-thickness holes. ASME J. Fluids Eng. 129, 1164–1171 (2007)CrossRefGoogle Scholar
  23. 23.
    Mastorakos, E., Taylor, A.M.K.P., Whitelaw, J.H.: Extinction and temperature characteristics of turbulent counterflow diffusion flames with partial premixing. Combust. Flame 91, 40–54 (1992)CrossRefGoogle Scholar
  24. 24.
    Oefelein, J.C., Schefer, R.W., Barlow, R.S.: Toward validation of large eddy simulation for turbulent combustion. AIAA 44(3), 418–433 (2006)CrossRefADSGoogle Scholar
  25. 25.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  26. 26.
    Rolon, J.C., Aguerre, F., Candel, S.: Experiments on the interaction between a vortex and a strained diffusion flame. Combust. Flame 100, 422–429 (1995)CrossRefGoogle Scholar
  27. 27.
    Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust. 74, 103–127 (2005)zbMATHCrossRefGoogle Scholar
  28. 28.
    Tresso, R., Munoz, D.R.: Homogenous, isotropic flow in grid generated turbulence. ASME J. Fluids Eng. 122, 51–56 (2000)CrossRefGoogle Scholar
  29. 29.
    Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W., Geyer, D., Dreizler, A.: Time-resolved measurements of hydroxyl in stable and extinguishing partially premixed turbulent opposed-jet flames. Flow Turbul. Combust. 76, 257–278 (2006)CrossRefGoogle Scholar
  30. 30.
    Yoshida, A., Igarashi, T., Kotani, Y.: Extinction of turbulent diffusion flames by Kolmogorov microscale turbulence. Combust. Flame 109(4), 669–681 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Benjamin Böhm
    • 1
    Email author
  • Oliver Stein
    • 2
  • Andreas Kempf
    • 2
  • Andreas Dreizler
    • 1
  1. 1.Fachgebiet Reaktive Strömungen und Messtechnik, Centre of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Department of Mechanical EngineeringImperial College LondonLondonUK

Personalised recommendations