Advertisement

Flow, Turbulence and Combustion

, Volume 85, Issue 3–4, pp 457–472 | Cite as

Scaling of Conditional Lagrangian Time Correlation Functions of Velocity and Pressure Gradient Magnitudes in Isotropic Turbulence

  • Huidan Yu
  • Charles Meneveau
Article

Abstract

We study Lagrangian statistics of the magnitudes of velocity and pressure gradients in isotropic turbulence by quantifying their correlation functions and their characteristic time scales. In a recent work (Yu and Meneveau, Phys Rev Lett 104:084502, 2010), it has been found that the Lagrangian time-correlations of the velocity and pressure gradient tensor and vector elements scale with the locally-defined Kolmogorov time scale, evaluated from the locally-averaged dissipation-rate (ϵ r ) and viscosity (ν) according to \(\tau_{K,r}=\sqrt{\nu/\epsilon_r}\). In this work, we study the Lagrangian time-correlations of the absolute values of velocity and pressure gradients. It has long been known that such correlations display longer memories into the inertial-range as well as possible intermittency effects. We explore the appropriate temporal scales with the aim to achieve collapse of the correlation functions. The data used in this study are sampled from the web-services accessible public turbulence database (http://turbulence.pha.jhu.edu). The database archives a 10244 (space+time) pseudo-spectral direct numerical simulation of forced isotropic turbulence with Taylor-scale Reynolds number Re λ  = 433, and supports spatial differentiation and spatial/temporal interpolation inside the database. The analysis shows that the temporal auto-correlations of the absolute values extend deep into the inertial range where they are determined not by the local Kolmogorov time-scale but by the local eddy-turnover time scale defined as \(\tau_{e,r}= r^{2/3}\epsilon_r^{-1/3}\). However, considerable scatter remains and appears to be reduced only after a further (intermittency) correction factor of the form of (r/L) χ is introduced, where L is the turbulence integral scale. The exponent χ varies for different variables. The collapse of the correlation functions for absolute values is, however, less satisfactory than the collapse observed for the more rapidly decaying strain-rate tensor element correlation functions in the viscous range.

Keywords

Isotropic turbulence Direct numerical simulation Lagrangian statistics Turbulence database Refined Kolomogorov similarity hypothesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, H., Meneveau, C.: Lagrangian refined Kolmogorov similarity hypothesis for gradient time-evolution in turbulent flows. Phys. Rev. Lett. 104, 084502 (2010)CrossRefGoogle Scholar
  2. 2.
    Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196 (1921)CrossRefGoogle Scholar
  3. 3.
    Richardson, L.F.: Atmospheric diffusion shown on a distance-neighbor graph. Proc. R. Soc. Lond., A 110, 709 (1926)CrossRefGoogle Scholar
  4. 4.
    Kolmogorov, A.N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 301 (1941)Google Scholar
  5. 5.
    Kolmogorov, A.N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Oboukhov, A.M.: Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77 (1962)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Stolovitzky, G., Kailasnath, P., Sreenivasan, K.R.: Kolmogorov’s refined similarity hypotheses. Phys. Rev. Lett. 69, 1178 (1992)CrossRefGoogle Scholar
  8. 8.
    Thoroddsen, S.T., van Atta, C.W.: Experimental evidence supporting Kolmogorov’s refined similarity hypothesis. Phys. Fluids, A 4, 2592 (1992)CrossRefGoogle Scholar
  9. 9.
    Chen, S., Doolen, G.D., Kraichnan, R.H., She, Z.-S.: On statistical correlations between velocity invrements and locally averaged dissipation in homogenous turbulence. Phys. Fluids, A 5, 458 (1993)CrossRefGoogle Scholar
  10. 10.
    Stolovitzky, G., Sreenivasan, K.R.: Kolmogorov’s refined similarity hypotheses for turbulence and general stochastic processes. Rev. Mod. Phys. 66, 229 (1994)CrossRefGoogle Scholar
  11. 11.
    Chen, S., Doolen, G.D., Kraichnan, R.H., Wang, L.-P.: Is the Kolmogorov refined similarity relation dynamic or kinematic. Phys. Rev. Lett. 74, 1775 (1995)CrossRefGoogle Scholar
  12. 12.
    Ching, E.S.C., Guo, H., Lo, T.S.: Lagrangian properties of particles in turbulence. Phys. Rev., E 78, 026303 (2008)CrossRefGoogle Scholar
  13. 13.
    Yeung, P.K., Pope, S.B., Lamorgese, A.G., Donzis, D.A.: Acceleration and dissipation statistics of numerically simulated isotropic turbulence. Phys. Fluids 18, 065103 (2006)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Pope, S.B.: Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 23 (1994)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Yeung, P.K.: Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 115 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119 (1985)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Girimaji, S.S., Pope, S.B.: Material element deformation in isotropic turbulence. J Fluid Mech. 220, 427 (1990)CrossRefGoogle Scholar
  18. 18.
    Girimaji, S.S., Pope, S.B.: A diffusion model for velocity gradients in turbulence. Phys. Fluids, A 2, 242 (1990)zbMATHCrossRefGoogle Scholar
  19. 19.
    Vieillefosse, P.: Local interaction between vorticity and shear in a perfect incompressible fluid. J. Phys. (France) 43, 837 (1982)MathSciNetGoogle Scholar
  20. 20.
    Cantwell, B.J.: Exact solution of a restricted Euler equation. Phys. Fluids, A 4, 782 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Martin, J., Ooi, A., Chong, M.S., Soria, J.: Dynamics of the velocity gradient tensor invariants in isotropic turbulence. Phys. Fluids 10, 2336 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Chertkov, M., Pumir, A., Shraiman, B.I.: Lagrangian tetrad dynamics and the phenomenology of turbulence. Phys. Fluids 11, 2394 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Jeong, E., Girimaji, S.S.: Velocity-gradient dynamics in turbulence: Effect of viscosity and forcing. Theor. Comput. Fluid Dyn. 16, 421 (2003)zbMATHCrossRefGoogle Scholar
  24. 24.
    Chevillard, L., Meneveau, C.: Lagrangian dynamics and statistical geometric structure of turbulence. Phys. Rev. Lett. 97, 174501 (2006)CrossRefGoogle Scholar
  25. 25.
    Biferale, L., Chevillard, L., Meneveau, C., Toschi, F.: Multi-scale model of gradient evolution in turbulent flows. Phys. Rev. Lett. 98, 214501 (2007)CrossRefGoogle Scholar
  26. 26.
    Guala, M., Liberzon, A., Tsinober, A., Kinzelbach, W.: An experimental investigation on Lagrangian correlations of small-scale turbulence at low Reynolds number. J. Fluid Mech. 574, 405 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Yeung, P.K., Pope, S.B., Kurth, E.A., Lamorgese, A.G.: Lagrangian conditional statistics, acceleration and local relative motion in numerically simulated isotropic turbulence. J. Fluid Mech. 582, 399 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Riley, J.J., Patterson, G.S.: Diffusion experiments with numerically integrated isotopic turbulence. Phys. Fluids 17, 292 (1974)zbMATHCrossRefGoogle Scholar
  29. 29.
    She, Z-S., Jackson, E., Sreenivasan, K.R.: Structure and dynamics of homogenous turbulence: models and simulations. Proc. R. Soc. Lond., A 434, 101 (1991)zbMATHCrossRefGoogle Scholar
  30. 30.
    Toschi, F., Bodenschatz, E.: Lagrangian properties of particles in turbulence. Annu. Rev. Fluid Mech. 41, 375 (2009)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Li, Y., Perlman, E., Wan, M., Yang, Y., Burns, R., Meneveau, C., Burns, R., Chen, S., Szalay, A., Eyink, G.: A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence. J. Turbul. 9, 31 (2008)CrossRefGoogle Scholar
  32. 32.
    Yeung, P.K., Pope, S.B.: An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comp. Phys. 79, 373 (1988)zbMATHCrossRefGoogle Scholar
  33. 33.
    Benzi, R., Biferale, L., Calzavarini, E., Lohse, D., Toschi, F.: Velocity-gradient statistics along particle trajectories in turbulent flows: the refined similarity hypothesis in the Lagrangian frame. Phys. Rev., E 80, 066318 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Institute for Data Intensive Engineering and ScienceJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations