Reliability Issues of LES-Related Approaches in an Industrial Context

  • Simon E. GantEmail author


Large-Eddy Simulation (LES), Detached-Eddy Simulation (DES) and Scale-Adaptive Simulation (SAS) are increasingly being used as engineering tools to predict the behaviour of complex industrial flows. Often the flows studied have not been examined previously and the required grid resolution is unknown. Industrial users studying these flows tend to be using commercial CFD codes and do not usually have access to high-performance computing facilities. Due to the significant computing times required, it is difficult to undertake systematic grid-dependence studies. There is therefore a risk that LES, DES and SAS will be performed using overly coarse grids which may lead to unreliable predictions. The present work surveys a number of practical techniques that provide a means of assessing the quality of the grid resolution in large-eddy simulations and related approaches. To examine the usefulness of these techniques, a gas release in a ventilated room is examined using DES and SAS. The grid resolution measures indicate that overall the grids used are relatively coarse. Both DES and SAS model predictions are found to be in poor agreement with experimental data compared to steady and unsteady Reynolds-averaged Navier–Stokes (RANS) results using the SST model. The SAS model also shows the greatest grid sensitivity of the four models tested. The work highlights the need for grid-dependence studies and the potential problems of using coarse grids.


Quality Grid resolution Large-Eddy Simulation Gas dispersion 


  1. 1.
    McGrattan, K.B., Hamins, A.: Numerical simulation of the Howard Street tunnel fire. Fire Technol. 42, 273–281 (2003). doi: 10.1007/s10694-006-7506-9 CrossRefGoogle Scholar
  2. 2.
    Hamins, A., Maranghides, A., McGrattan, K.B., Ohlemiller, T., Anleitner, R.: Experiments and modeling of multiple workstations burning in a compartment. Report NIST NCSTAR 1-5E, Federal Building and Fire Safety Investigation of the World Trade Center Disaster. National Institute for Standards and Technology, Gaithersburg, Maryland, USA (2005)Google Scholar
  3. 3.
    McGrattan, K., Klein, B., Hostikka, S., Floyd, J.: Fire Dynamics Simulator (Version 5) User’s Guide. NIST Special Publication 1019-5, National Institute of Standards and Technology, Gaithersburg, Maryland, USA. (2009). Accessed 24 February 2009
  4. 4.
    Mahaffy, J., Chung, B., Dubois, F., Dubois, F., Graffard, E., Heitsch, M., Henriksson, M., Komen, E., Moretti, F., Morii, T., Mühlbauer, P., Rohde, U., Scheuerer, M., Smith, B.L., Song, C., Watanabe, T., Zigh, G.: Best practice guidelines for the use of CFD in nuclear reactor safety applications. Report NEA/CSNI/R(2007)5, Organisation for Economic Co-operation and Development. (2007). Accessed 21 March 2008
  5. 5.
    Casey, M., Wintergerste, T. (eds.): Best practice guidelines, version 1.0. ERCOFTAC Special Interest Group on “Quality and Trust in Industrial CFD” (2000)Google Scholar
  6. 6.
    Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large eddy simulation. Phys. Fluids 14, 41–44 (2002)CrossRefADSGoogle Scholar
  7. 7.
    Geurts, B.J.: Elements of Direct and Large-Eddy Simulation. R.T. Edwards, Philadelphia (2004)Google Scholar
  8. 8.
    Brandt, T.: A posteriori study on modelling and numerical error in LES applying the Smagorinsky model. In: Kassinos, S., Langer, C., Iaccarino, G., Moin, P. (eds.) Complex Effects in Large Eddy Simulations, pp. 185–202. Springer, Heidelberg (2007)Google Scholar
  9. 9.
    Brandt, T.: Study on numerical and modelling errors in LES using a priori and a posteriori testing. Ph.D. thesis, Department of Mechanical Engineering, Helsinki University of Technology, Espoo, Finland (2007)Google Scholar
  10. 10.
    Geurts, B.J.: Interacting errors in Large-Eddy Simulation: a review of recent developments. J. Turbul. 7, 1468–5248 (2006) doi: 10.1080/14685240600796507 Google Scholar
  11. 11.
    Geurts, B.J., Fröhlich, J.: Numerical effects contaminating LES: a mixed story. In: Geurts, B.J. (ed.) Modern Simulation Strategies for Turbulent Flow. R.T. Edwards, Philadelphia (2001)Google Scholar
  12. 12.
    Celik, I.B., Klein, M., Freitag, M., Janicka, J.: Assessment measures for URANS/DES/LES: an overview with applications. J. Turbul. 7, 1–27 (2006) doi: 10.1080/14685240600794379 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Addad, Y., Benhamadouche, S., Laurence, D.: The negatively buoyant wall-jet: LES results. Int. J. Heat Fluid Flow 25, 795–808 (2004)CrossRefGoogle Scholar
  14. 14.
    Van Maele, K., Merci, B.: Application of RANS and LES field simulations to predict the critical ventilation velocity in longitudinally ventilated horizontal tunnels. Fire Saf. J. 43, 598–609 (2008)CrossRefGoogle Scholar
  15. 15.
    Piomelli, U., Chasnov, J.R.: Large-Eddy Simulations: theory and applications. In: Henningson, A., Hallback, K., Alfredsson, L., Johansson, M. (eds.) Transition and Turbulence Modelling, pp. 269–336. Kluwer Academic, Dordrecht (1996)Google Scholar
  16. 16.
    Shi, J.-M., Thomas, T.G., Williams, J.J.R.: Coarse resolution Large-Eddy Simulation of turbulent channel flows. Int. J. Numer. Meth. Heat Fluid Flow 11, 20–35 (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Spalart, P.R.: Young-person’s guide to detatched-eddy simulation grids. Report NASA/CR-2001-211032, National Aeronautics and Space Administration, USA (2001)Google Scholar
  18. 18.
    Proc. Hybrid RANS-LES Simulations for Industrial Users Course, BAE Systems, Farnborough, UK, 21–22 October. ERCOFTAC (2008)Google Scholar
  19. 19.
    Celik, I.B., Cehreli, Z.N., Yavuz, I.: Index of resolution quality for large eddy simulations. J. Fluids Eng. 127, 949–958 (2005)CrossRefGoogle Scholar
  20. 20.
    Hadžiabdić, M., Hanjalić, K.: Vortical structures and heat transfer in a round impinging jet. J. Fluid Mech. 596, 221–260 (2008)zbMATHADSGoogle Scholar
  21. 21.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  22. 22.
    Kempf, A., Lindstedt, R.P., Janicka, J.: Large-Eddy Simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144, 170–189 (2006)CrossRefGoogle Scholar
  23. 23.
    Zhou, X., Luo, K.H., Williams, J.J.R.: Large-Eddy Simulation of a turbulent forced plume. Eur. J. Mech. B, Fluids 20, 233–254 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Zhou, X.H., Luo, K.H., Williams, J.J.R.: Study of density effects in turbulent buoyant jets using Large-Eddy Simulation. Theor. Comput. Fluid Dyn. 15, 95–120 (2001)zbMATHCrossRefGoogle Scholar
  25. 25.
    Kuczaj, A.K., Komen, E.M.J.: Large-Eddy Simulation study of turbulent mixing in a T-junction. In: Proc. Experiments and CFD Code Applications to Nuclear Reactor Safety (XCFD4NRS), Commissariat à l’Energie Atomique (CEA), Grenoble, France, 10–12 September (2008)Google Scholar
  26. 26.
    Klein, M.: An attempt to assess the quality of large eddy simulations in the context of implicit filtering. Flow Turbul. Combust. 75, 131–147 (2005)zbMATHCrossRefGoogle Scholar
  27. 27.
    Celik, I., Klein, M., Janicka, J.: Assessment measures for engineering LES applications. J. Fluids Eng. 131(0311102), 1–10 (2009)Google Scholar
  28. 28.
    Ivings, M.J., Clarke, S.P., Gant, S.E., Fletcher, B., Heather, A., Pocock, D.J., Pritchard, D., Santon, R., Saunders, C.J.: Area classification for secondary releases from low pressure natural gas systems. Report RR630, Health & Safety Executive, UK (2008)Google Scholar
  29. 29.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994)CrossRefADSGoogle Scholar
  30. 30.
    Strelets, M.: Detached eddy simulation of massively separated flows. AIAA paper 2001-0879, 39th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, USA (2001)Google Scholar
  31. 31.
    ANSYS CFX 11.0 User Manual. ANSYS Inc., Canonsburg, Pennsylvania, USA (2006)Google Scholar
  32. 32.
    Gant, S.E.: Quality and reliability issues with Large-Eddy Simulation. Report RR656, Health & Safety Executive, UK (2009)Google Scholar
  33. 33.
    Zhang, Z., Zhang, W., Zhai, Z., Chen, Q.: Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: part-2: comparison with experimental data from literature. HVAC & R Research 13, 871–886 (2007)Google Scholar
  34. 34.
    Electrical apparatus for explosive gas atmospheres, part 10: classification of hazardous areas, BS EN 60079-10 (2003)Google Scholar
  35. 35.
    Theunissen, R., Di Sante, A., Riethmuller, M.L., Van den Braembussche, R.A.: Confidence estimation using dependent circular block bootstrapping: application to the statistical analysis of PIV measurements. Exp. Fluids 44, 591–596 (2008)CrossRefGoogle Scholar
  36. 36.
    Patton, A., Politis, D.N., White, H.: Correction to “Automatic block-length selection for the dependent bootstrap” by D. Politis and H. White. Econom. Rev. 28, 372–375 (2009)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© U.K. Health & Safety Laboratory (an Agency of the Health & Safety Executive) 2009

Authors and Affiliations

  1. 1.Health and Safety Laboratory (HSL)BuxtonUK

Personalised recommendations