Advertisement

Flow, Turbulence and Combustion

, Volume 83, Issue 3, pp 425–448 | Cite as

Experimental and Computational Investigations of Flow and Mixing in a Single-Annular Combustor Configuration

  • Suad JakirlićEmail author
  • Björn Kniesner
  • Gisa Kadavelil
  • Markus Gnirß
  • Cameron Tropea
Article

Abstract

A complementary experimental and computational study of the flow and mixing in a single annular gas turbine combustor has been carried out. The object of the investigation is a generic mixing chamber model, representing an unfolded segment of a simplified Rich-Quick-Lean (RQL) combustion chamber operating under isothermal, non-reacting conditions at ambient pressure. Two configurations without and with secondary air injection were considered. To provide an appropriate reference database several planar optical measurement techniques (time-resolved flow visualisation, PIV, QLS) were used. The PIV measurements have been performed providing profiles of all velocity and Reynolds-stress components at selected locations within the combustor. Application of a two-layer hybrid LES/RANS (HLR) method coupling a near-wall k − ε RANS model with conventional LES in the core flow was the focus of the computational work. In addition to the direct comparison with the experimental results, the HLR performance is comparatively assessed with the results obtained by using conventional LES using the same (coarser) grid as HLR and two eddy-viscosity-based RANS models. The HLR model reproduced all important flow features, in particular with regard to the penetrating behaviour of the secondary air jets, their interaction with the swirled main flow, swirl-induced free recirculation zone evolution and associated precessing-vortex core phenomenon in good agreement with experimental findings.

Keywords

Single-annular swirl combustor PIV measurements Quantitative Light-Sheet (QLS) method  LES RANS Hybrid LES/RANS methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to Re τ = 1020 with Pr = 0.025 and 0.71. Int. J. Heat Fluid Flow 25, 404–419 (2004)CrossRefGoogle Scholar
  2. 2.
    Albrecht, H.-E., Borys, M., Damaschke, N., Tropea, C.: Laser Doppler and Phase Doppler Measurement Techniques. Springer, Berlin (2002)Google Scholar
  3. 3.
    Böhm, B., Findeisen, J., Dreizler, A., Hennecke, D.K.: Untersuchung der Turbulenzstruktur einer verdrallten Brennkammerströmung, GALA, Karlsruhe, Germany, 7–9 September 2004Google Scholar
  4. 4.
    Böhm, B., Dreizler, A., Gnirß, M., Tropea, C., Findeisen, J., Schiffer, H.-P.: Experimental investigation of turbulence structure in a three-nozzle combustor. Paper No. GT2007-27111 (2007)Google Scholar
  5. 5.
    FASTEST-Manual: Chair of Numerical Methods in Mechanical Engineering. Department of Mechanical Engineering, Technische Universität Darmstadt, Germany (2005)Google Scholar
  6. 6.
    Findeisen, J., Gnirß, M., Damaschke, N., Schiffer, H.-P., Tropea, C.: 2D-concentration measurements based on Mie scattering using a commercial PIV system. In: Proc. 6th Int. Symposium on Particle Image Velocimetry, Pasadena, USA, 21–23 September 2005Google Scholar
  7. 7.
    Gan, X.P.: Experimental and analytical studies of jets in quiescent or rotating flow fields. Ph.D. thesis, University of Bath, UK (1990)Google Scholar
  8. 8.
    Gnirß, M., Findeisen, J., Damaschke, N., Tropea, C., Schiffer, H.-P.: Experimental investigation of coherent flow structures in a gas-turbine combustor model. In: Proc. 5th Int. Symp. on Turbulence, Heat and Mass Transfer, Dubrovnik, Croatia, 25–29 September 2006Google Scholar
  9. 9.
    Gnirß, M., Tropea, C.: Simultaneous PIV and concentration measurements in a gas-turbine combustor model. Exp. Fluids 45(4), 643–656 (2008)CrossRefGoogle Scholar
  10. 10.
    Gnirß, M.: Strömung und Mischung im Primärzonenbereich von modernen Gasturbinenbrennkammern. Ph.D. thesis, Technische Universität Darmstadt, Germany, Shaker Verlag, ISBN 978-3-8322-7821-2 (2008)Google Scholar
  11. 11.
    Hanjalić, K., Jakirlić, S.: Contribution towards the second-moment closure modelling of separating turbulent flows. Comput. Fluids 27(2), 137–156 (1998)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hanjalić, K.: Hybrid RANS-LES—a Critical Appraisal and a Proposal. Internal Report, Department of Aeronautics, Imperial College London, UK and Technical University Delft, The Netherlands (2001)Google Scholar
  13. 13.
    Heitor, M.V., Whitelaw, J.H.: Velocity, temperature and species characteristic of the flow in a gas-turbine combustor. Combust. Flame 64, 1–32 (1986)CrossRefGoogle Scholar
  14. 14.
    Hanjalić, K., Popovac, M., Hadziabdić, M.: A robust near-wall elliptic-relaxation eddy-viscosity model for CFD. Int. J. Heat Fluid Flow 25, 1047–1051 (2004)CrossRefGoogle Scholar
  15. 15.
    Jakirlić, S., Hanjalić, K., Tropea, C.: Modelling rotating and swirling flows; a perpetual challenge. AIAA J. 40(10), 1984–1996 (2002)CrossRefADSGoogle Scholar
  16. 16.
    Jakirlić, S., Kniesner, B., Šarić, S., Hanjalić, K.: Merging near-wall RANS models with LES for separating and reattaching flows. In: ASME Joint U.S.–European Fluids Engineering Summer Meeting: Symposium on “DNS, LES and Hybrid RANS/LES Techniques”, Miami, FL, USA, 17–20 July, Paper No. FEDSM2006-98039 (2006)Google Scholar
  17. 17.
    Jester-Zürker, R., Jakirlić, S., Tropea, C.: Computational modelling of turbulent mixing in confined swirling environment under constant and variable density conditions. Flow Turbul. Combust. 75(1–4), 217–244 (2005)zbMATHCrossRefGoogle Scholar
  18. 18.
    Kniesner, B., Jester-Zürker, R., Jakirlić, S., Hanjalić, K.: RANS-SMC and hybrid LES/RANS of a backward-facing step flow subjected to increasingly enhanced wall heating. In: 5th International Symposium on Turbulence and Shear Flow Phenomena (TSFP5), Munich, Germany, 27–29 August 2007Google Scholar
  19. 19.
    Kniesner, B.: Ein hybrides LES/RANS Verfahren für konjugierte Strömung, Wärme- und Stoffübertragung mit Relevanz zu Drallbrennerkonfigurationen (A hybrid LES/RANS method for conjugated flow, heat and mass transfer with relevance to swirl combustor configurations). Ph.D. thesis, Technische Universität Darmstadt, Germany (2008). http://tuprints.ulb.tu-darmstadt.de/950/
  20. 20.
    Koutmos, P.: An isothermal study of gas turbine flows. Ph.D. thesis, University of London (1985)Google Scholar
  21. 21.
    Koutmos, P., McGuirk, J.J.: Isothermal flow in a gas-turbine combustor—a benchmark experimental study. Exp. Fluids 7(5), 344–354 (1989)CrossRefGoogle Scholar
  22. 22.
    Koutmos, P., McGuirk, J.J.: Isothermal modeling of gas-turbine combustors—computational study. J. Propuls. Power 7(6), 1064–1071 (1991)CrossRefGoogle Scholar
  23. 23.
    Launder, B.E., Sharma, B.I.: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Lett. Heat Mass Transf. 1, 131–138 (1974)CrossRefADSGoogle Scholar
  24. 24.
    Lin, C.A.: Three-dimensional computation of injection into swirling cross flow using second-moment closure. Ph.D. thesis, Faculty of Technology, University of Manchester (1990)Google Scholar
  25. 25.
    Lin, C.A., Leschziner, M.A.: Three-dimensional computation of transient interaction between radially injected jet and swirling cross-flow using second-moment closure. Comput. Fluid Dyn. J. 1(4), 419–428 (1993)Google Scholar
  26. 26.
    Mason, P.J., Callen, N.S.: On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulation of turbulent channel flow. J. Fluid Mech. 162, 439–462 (1986)zbMATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    McGuirk, J.J., Palma, J.M.L.M.: Experimental investigation of the flow inside a water model of a gas turbine combustor: part 1—mean and turbulent flowfield. ASME J. Fluids Eng. 117(3), 450–458 (2002)CrossRefGoogle Scholar
  28. 28.
    Monmont, F., Greenhalgh, D.: Cranfield University Contribution to Final Report on Brite-Euram III Project LES4LPP. Technical Report LES4LPP-BE95-1953 (1999)Google Scholar
  29. 29.
    Mueller, C.M., Knill, K.J.: Numerical simulation of emissions in a gas turbine combustor. Combustion Canada ‘96 (1996)Google Scholar
  30. 30.
    Palm, R.: Experimentelle Untersuchung der Strömung und Vermischung in einem Drallbrennermodell (Experimental investigation of flow and mixing in a model of swirl combustor). Ph.D. thesis, Technische Universität Darmstadt, Germany (2006). http://tuprints.ulb.tu-darmstadt.de/723/
  31. 31.
    Palm, R., Grundmann, S., Weismüller, M., Šarić, S., Jakirlić, S., Tropea, C.: Experimental characterization and modelling of inflow conditions for a gas turbine swirl combustor. Int. J. Heat Fluid Flow 27(5), 924–936 (2006)CrossRefGoogle Scholar
  32. 32.
    Pierce, C.D., Moin, P.: Method for generating equilibrium swirling inflow conditions. AIAA J. 36(7), 1325–1327 (1998)CrossRefADSGoogle Scholar
  33. 33.
    Pope, S.: Turbulent flows. Cambridge University Press, ISBN 0-521-59886-9 (2000)Google Scholar
  34. 34.
    Roback, R., Johnson, B.V.: Mass and Momentum Turbulent Transport Experiments with Confined Swirling Coaxial Jets. NASA Contractor Report 168252 (1983)Google Scholar
  35. 35.
    Sternel, D.C., Schäfer, M., Gauß, F., Jigit, S.: Influence of numerical parameters for LES of complex flow fields. In: Wesseling, P., Oñate, E., Périaux, J. (eds.) European Conference on Computational Fluid Dynamics, ECCOMAS CFD 2006. TU Delft, The Netherlands (2006)Google Scholar
  36. 36.
    Tang, G., Yang, Z., McGuirk, J.J.: Large eddy simulation of isothermal confined swirling flow with recirculation. In: Rodi, W., Fueyo, N. (eds.) Proc. 5th Int. Symp. on Engineering Turbulence Modelling and Measurements, pp. 885–894. Elsevier Science Ltd. (2002)Google Scholar
  37. 37.
    Temmerman, L., Hadziabdic, M., Leschziner, M.A., Hanjalic, K.: A hybrid two-layer URANS-LES approach for large eddy simulation at high Reynolds numbers. Int. J. Heat Fluid Flow 26, 173–190 (2005)CrossRefGoogle Scholar
  38. 38.
    Voigt, P., Schodl, R., Griebel, P.: Using the laser light sheet technique in combustion research. In: 90th Symp. of AGARD–PEP on Advanced Non-intrusive Instrumentation for Propulsion Engines (1997)Google Scholar
  39. 39.
    Wennerberg, D., Obi, S.: Prediction of strongly swirling flows in quarl expansions with a non-orthogonal finite-volume method and a second-moment turbulence closure. In: Rodi, W., Martelli, F. (eds.) Engineering Turbulence Modelling and Experiments, vol. 2, pp. 197–206. ISBN 0444898026 (1993)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Suad Jakirlić
    • 1
    Email author
  • Björn Kniesner
    • 1
  • Gisa Kadavelil
    • 1
  • Markus Gnirß
    • 1
  • Cameron Tropea
    • 1
  1. 1.Fluid Mechanics and AerodynamicsTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations