Flow, Turbulence and Combustion

, Volume 84, Issue 3, pp 339–356 | Cite as

Statistically Steady Incompressible DNS to Validate a New Correlation for Turbulent Burning Velocity in Turbulent Premixed Combustion



Incompressible 3-D DNS is performed in non-decaying turbulence with single step chemistry to validate a new analytical expression for turbulent burning velocity. The proposed expression is given as a sum of laminar and turbulent contributions, the latter of which is given as a product of turbulent diffusivity in unburned gas and inverse scale of wrinkling at the leading edge. The bending behavior of UT at higher u′ was successfully reproduced by the proposed expression. It is due to decrease in the inverse scale of wrinkling at the leading edge, which is related with an asymmetric profile of FSD with increasing u′. Good agreement is achieved between the analytical expression and the turbulent burning velocities from DNS throughout the wrinkled, corrugated and thin reaction zone regimes. Results show consistent behavior with most experimental correlations in literature including those by Bradley et al. (Philos Trans R Soc Lond A 338:359–387, 1992), Peters (J Fluid Mech 384:107–132, 1999) and Lipatnikov et al. (Progr Energ Combust Sci 28:1–74, 2002).


Turbulent burning velocity Premixed turbulent combustion Zone conditional Flame surface density Direct numerical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley, D., Lau, A.K.C., Lawes, M.: Flame stretch rate as a determinant of turbulent burning velocity. Philos. Trans. R. Soc. Lond. A 338, 359–387 (1992)CrossRefADSGoogle Scholar
  2. 2.
    Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999). doi:10.1017/S0022112098004212 MATHCrossRefADSGoogle Scholar
  3. 3.
    Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness:phenomenology, evaluation, and application in multidimensional simulations. Progr. Energ. Combust. Sci. 28, 1–74 (2002). doi:10.1016/S0360-1285(01)00007-7 CrossRefGoogle Scholar
  4. 4.
    Zimont, V.L., Mesheriakov, E.A.: A model of combustion of partially premixed gases. In: Structure of Gas Flames. Proceedings of International Colloquium. Part, I.I., Novosivirsk: ITPM SO AN SSSR, pp. 35–43 (1988, in Russian)Google Scholar
  5. 5.
    Gülder, Ö.L.: Contribution of small scale turbulence to burning velocity of flamelets in the thin reaction zone regime. Proc. Combust. Inst. 31, 1369–1375 (2007). doi:10.1016/j.proci.2006.07.189 CrossRefGoogle Scholar
  6. 6.
    Filatyev, S.A., Driscoll, J.F., Carter, C.D., Donbar, J.M.: Measured properties of turbulent premixed flames for model assessment, including burning velocities, stretch rates, and surface densities. Combust. Flame 141, 1–21 (2005). doi:10.1016/j.combustflame.2004.07.010 CrossRefGoogle Scholar
  7. 7.
    Cho, P., Law, C.K., Hertzberg, J.R., Cheng, R.K.: Structure and propagation of turbulent premixed flames stabilized in a stagnation flow. Proc. Combust. Inst. 21, 1493–1499 (1988)Google Scholar
  8. 8.
    Liñán, A., Williams, F.A.: Fundamental Aspects of Combustion. Oxford University Press, New York (1993)Google Scholar
  9. 9.
    Kolmogorov, A.N., Petrovski, I.G., Piskunov, N.S.: Investigation of the diffusion equation connected with an increasing amount of matter and its application to a biological problem. Bull. MGU A1, 1–26 (1937)Google Scholar
  10. 10.
    Zeldovich, Y.B., Barenblatt, G.I., Librovich, V.B., Makhviladze, G.M.: The Mathematical Theory of Combustion and Explosion. Consultants Bureau, New York (1985)Google Scholar
  11. 11.
    Hakberg, B., Gosman, A.D.: Analytical determination of turbulent flame speed from combustion models. Proc. Combust. Inst. 20, 225–232 (1984)Google Scholar
  12. 12.
    Corvellec, C., Bruel, P., Sabel’Nikov, V.A.: Turbulent premixed flames in the flamelet regime: burning velocity spectral properties in the presence of countergradient diffusion. Combust. Flame 120, 585–588 (2000). doi:10.1016/S0010-2180(99)00120-0 CrossRefGoogle Scholar
  13. 13.
    Im, Y.H., Huh, K.Y., Nishiki, S., Hasegawa, T.: Zone conditional assessment of flame-generated turbulence with DNS database of a turbulent premixed flame. Combust. Flame 137, 478–488 (2004). doi:10.1016/j.combustflame.2004.03.006 CrossRefGoogle Scholar
  14. 14.
    Lee, E., Im, Y.H., Huh, K.Y.: Zone conditional analysis of a freely propagating one-dimensional turbulent premixed flame. Proc. Combust. Inst. 30, 851–857 (2005). doi:10.1016/j.proci.2004.08.171 CrossRefGoogle Scholar
  15. 15.
    Huh, K.Y., Kim, S.H., Kim, S.Y.: Validation of an asymptotic zone conditional expression for turbulent burning velocity against DNS database. In: Proc. of Summer Prog., CTR, Stanford University, pp. 269–282 (2004)Google Scholar
  16. 16.
    Libby, P.A., Williams, F.A.: Turbulent Reaction Flows. Academic, London (1993)Google Scholar
  17. 17.
    Sullivan, N.P., Mahalingam, S., Kerr, R.M.: Deterministic forcing of homogeneous, isotropic turbulence. Phys. Fluids 6, 1612–1614 (1994). doi:10.1063/1.868274 CrossRefADSGoogle Scholar
  18. 18.
    Kennedy, C.A., Carpenter, M.H., Lewis, R.M.: Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Appl. Numer. Math. 35, 177–219 (2000). doi:10.1016/S0168-9274(99)00141-5 MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992). doi:10.1016/0021-9991(92)90324-R MATHCrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992). doi:10.1016/0021-9991(92)90046-2 MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Pope, S.B.: Stochastic lagrangian models for turbulence. Annu. Rev. Fluid Mech. 26, 23–63 (1994). doi:10.1146/annurev.fl.26.010194.000323 CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Fung, J.C.H., Hunt, J.C.R., Malik, N.A., Perkins, R.J.: Kinematic simulation of homogeneous turbulence by unsteady random fourier modes. J. Fluid Mech. 236, 281–318 (1992). doi:10.1017/S0022112092001423 MATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    Plessing, T., Kortschik, C., Peters, N., Mansour, M.S., Cheng, R.K.: Measurements of the turbulent burning velocity and the structure of premixed flames on a lowswirl burner. Proc. Combust. Inst. 28, 359–366 (2000)CrossRefGoogle Scholar
  24. 24.
    Kerstein, A.R.: Pair-exchange model of turbulent premixed flame propagation. Proc. Combust. Inst. 21, 1281–1289 (1988)Google Scholar
  25. 25.
    Weller, H.G., Uslu, S., Gosman, A.D., Maly, R.R., Herweg, R., Heel, B.: Prediction of combustion in homogeneous-charge spark-ignition engines. In: COMODIA 94. Yokohama: JSME, pp. 163–169 (1994)Google Scholar
  26. 26.
    Klimov, A.M.: Premixed turbulent flames - interplay of hydrodynamic and chemical phenomena. Prog. Astronaut. Aeronaut. 88, 133 (1983)Google Scholar
  27. 27.
    Cant, R.S., Pope, S.B., Bray, K.N.C.: Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. Proc. Combust. Inst. 23, 809–815 (1990)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Combustion Laboratory, Department of Mechanical EngineeringPohang University of Science and TechnologyPohangRepublic of Korea

Personalised recommendations