Flow, Turbulence and Combustion

, Volume 83, Issue 2, pp 227–250 | Cite as

Large Eddy Simulation and PIV Measurements of Unsteady Premixed Flames Accelerated by Obstacles

  • V. Di Sarli
  • A. Di Benedetto
  • G. Russo
  • S. Jarvis
  • E. J. Long
  • G. K. Hargrave


In gas explosions, the unsteady coupling of the propagating flame and the flow field induced by the presence of blockages along the flame path produces vortices of different scales ahead of the flame front. The resulting flame–vortex interaction intensifies the rate of flame propagation and the pressure rise. In this paper, a joint numerical and experimental study of unsteady premixed flame propagation around three sequential obstacles in a small-scale vented explosion chamber is presented. The modeling work is carried out utilizing large eddy simulation (LES). In the experimental work, previous results (Patel et al., Proc Combust Inst 29:1849–1854, 2002) are extended to include simultaneous flame and particle image velocimetry (PIV) measurements of the flow field within the wake of each obstacle. Comparisons between LES predictions and experimental data show a satisfactory agreement in terms of shape of the propagating flame, flame arrival times, spatial profile of the flame speed, pressure time history, and velocity vector fields. Computations through the validated model are also performed to evaluate the effects of both large-scale and sub-grid scale (SGS) vortices on the flame propagation. The results obtained demonstrate that the large vortical structures dictate the evolution of the flame in qualitative terms (shape and structure of the flame, succession of the combustion regimes along the path, acceleration-deceleration step around each obstacle, and pressure time trend). Conversely, the SGS vortices do not affect the qualitative trends. However, it is essential to model their effects on the combustion rate to achieve quantitative predictions for the flame speed and the pressure peak.


Large eddy simulation Particle image velocimetry Unsteady propagation Premixed combustion Obstacles Sub-grid scale turbulence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Patel, S.N.D.H., Jarvis, S., Ibrahim, S.S., Hargrave, G.K.: An experimental and numerical investigation of premixed flame deflagration in a semiconfined explosion chamber. Proc. Combust. Inst. 29, 1849–1854 (2002). doi: 10.1016/S1540-7489(02)80224-3 CrossRefGoogle Scholar
  2. 2.
    Lindstedt, R.P., Sakthitharan, V.: Time resolved velocity and turbulence measurements in turbulent gaseous explosions. Combust. Flame 114, 469–483 (1998). doi: 10.1016/S0010-2180(97)00320-9 CrossRefGoogle Scholar
  3. 3.
    Fairweather, M., Hargrave, G.K., Ibrahim, S.S., Walker, D.G.: Studies of premixed flame propagation in explosion tubes. Combust. Flame 116, 504–518 (1999). doi: 10.1016/S0010-2180(98)00055-8 CrossRefGoogle Scholar
  4. 4.
    Masri, A.R., Ibrahim, S.S., Nehzat, N., Green, A.R.: Experimental study of premixed flame propagation over various solid obstructions. Exp. Therm. Fluid Sci. 21, 109–116 (2000). doi: 10.1016/S0894-1777(99)00060-6 CrossRefGoogle Scholar
  5. 5.
    Masri, A.R., Ibrahim, S.S., Cadwallader, B.J.: Measurements and large eddy simulation of propagating premixed flames. Exp. Therm. Fluid Sci. 30, 687–702 (2006). doi: 10.1016/j.expthermflusci.2006.01.008 CrossRefGoogle Scholar
  6. 6.
    Ibrahim, S.S., Hargrave, G.K., Williams, T.C.: Experimental investigation of flame/solid interactions in turbulent premixed combustion. Exp. Therm. Fluid Sci. 24, 99–106 (2001). doi: 10.1016/S0894-1777(01)00041-3 CrossRefGoogle Scholar
  7. 7.
    Hargrave, G.K., Jarvis, S., Williams, T.C.: A study of transient flow turbulence generation during flame/wall interactions in explosions. Meas. Sci. Technol. 13, 1036–1042 (2002). doi: 10.1088/0957-0233/13/7/310 CrossRefADSGoogle Scholar
  8. 8.
    Kirkpatrick, M.P., Armfield, S.W., Masri, A.R., Ibrahim, S.S.: Large eddy simulation of a propagating turbulent premixed flame. Flow Turbul. Combust. 70, 1–19 (2003). doi: 10.1023/B:APPL.0000004912.87854.35 MATHCrossRefGoogle Scholar
  9. 9.
    Jarvis, S., Hargrave, G.K.: A temporal PIV study of flame/obstacle generated vortex interactions within a semi-confined combustion chamber. Meas. Sci. Technol. 17, 91–100 (2006). doi: 10.1088/0957-0233/17/1/016 CrossRefADSGoogle Scholar
  10. 10.
    Long, E.J., Hargrave, G.K., Jarvis, S., Justham, T., Halliwell, N.: Characterisation of the interaction between toroidal vortex structures and flame front propagation. J. Phys. Conf. Ser. 45, 104–111 (2006). doi: 10.1088/1742-6596/45/1/014 CrossRefADSGoogle Scholar
  11. 11.
    Park, D.J., Green, A.R., Lee, Y.S., Chen, Y.-C.: Experimental studies on interactions between a freely propagating flame and single obstacles in a rectangular confinement. Combust. Flame 150, 27–39 (2007). doi: 10.1016/j.combustflame.2007.04.005 CrossRefGoogle Scholar
  12. 12.
    Wolfrum, J.: Lasers in combustion: from basic theory to practical devices. Proc. Combust. Inst. 27, 1–41 (1998)Google Scholar
  13. 13.
    Hassel, E.P., Linow, S.: Laser diagnostics for studies of turbulent combustion. Meas. Sci. Technol. 11, R37–R57 (2000). doi: 10.1088/0957-0233/11/2/201 CrossRefADSGoogle Scholar
  14. 14.
    Kohse-Höinghaus, K., Barlow, R.S., Aldén, M., Wolfrum, J.: Combustion at the focus: laser diagnostics and control. Proc. Combust. Inst. 30, 89–123 (2005). doi: 10.1016/j.proci.2004.08.274 CrossRefGoogle Scholar
  15. 15.
    Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007). doi: 10.1016/j.proci.2006.08.122 CrossRefGoogle Scholar
  16. 16.
    Hasegawa, T., Michikami, S., Nomura, T., Gotoh, D., Sato, T.: Flame development along a straight vortex. Combust. Flame 129, 294–304 (2002). doi: 10.1016/S0010-2180(02)00345-0 CrossRefGoogle Scholar
  17. 17.
    Filatyev, S.A., Thariyan, M.P., Lucht, R.P., Gore, J.P.: Simultaneous stereo particle image velocimetry and double-pulsed planar laser-induced fluorescence of turbulent premixed flames. Combust. Flame 150, 201–209 (2007). doi: 10.1016/j.combustflame.2007.02.005 CrossRefGoogle Scholar
  18. 18.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005). doi: 10.1016/j.proci.2004.08.279 CrossRefGoogle Scholar
  19. 19.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 2nd edn. R.T. Edwards, Inc., Philadelphia, PA, USA (2005)Google Scholar
  20. 20.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006). doi: 10.1146/annurev.fluid.38.050304.092133 CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Ji, J., Gore, J.P.: Flow structure in lean premixed swirling combustion. Proc. Combust. Inst. 29, 861–867 (2002). doi: 10.1016/S1540-7489(02)80110-9 CrossRefGoogle Scholar
  22. 22.
    Archer, S., Gupta, A.K.: Effect of swirl on flow dynamics in unconfined and confined gaseous fuel flames. AIAA Paper, AIAA-2004–813 (2004)Google Scholar
  23. 23.
    Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137, 489–505 (2004). doi: 10.1016/j.combustflame.2004.03.008 CrossRefGoogle Scholar
  24. 24.
    Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust. Flame 141, 40–54 (2005). doi: 10.1016/j.combustflame.2004.12.007 CrossRefGoogle Scholar
  25. 25.
    Wicksall, D.M., Agrawal, A.K., Schefer, R.W., Keller, J.O.: The interaction of flame and flow field in a lean premixed swirl-stabilized combustor operated on H2/CH4/air. Proc. Combust. Inst. 30, 2875–2883 (2005). doi: 10.1016/j.proci.2004.07.021 CrossRefGoogle Scholar
  26. 26.
    Boudier, G., Gicquel, L.Y.M., Poinsot, T., Bissières, D., Bérat, C.: Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber. Proc. Combust. Inst. 31, 3075–3082 (2007). doi: 10.1016/j.proci.2006.07.067 CrossRefGoogle Scholar
  27. 27.
    Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007). doi: 10.1016/j.proci.2006.07.086 CrossRefGoogle Scholar
  28. 28.
    Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27, 917–925 (1998)Google Scholar
  29. 29.
    Bray, K.N.C.: The challenge of turbulent combustion. Proc. Combust. Inst. 26, 1–26 (1996)Google Scholar
  30. 30.
    Libby, P.A., Williams, F.A. (eds.): Turbulent Reacting Flows. Academic Press, New York (1994)MATHGoogle Scholar
  31. 31.
    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)Google Scholar
  32. 32.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4, 633–635 (1992). doi: 10.1063/1.858280 CrossRefADSGoogle Scholar
  33. 33.
    Kim, S.-E.: Large eddy simulation using unstructured meshes and dynamic subgrid-scale turbulence models. AIAA Paper, AIAA-2004–2548 (2004)Google Scholar
  34. 34.
    Loitsyanskiy, L.G.: Mechanics of Liquids and Gases, 6th edn. Begell House, New York (1995)Google Scholar
  35. 35.
    Trouvé, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994). doi: 10.1017/S0022112094003599 MATHCrossRefADSMathSciNetGoogle Scholar
  36. 36.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion. Part I. Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002). doi: 10.1016/S0010-2180(02)00400-5 CrossRefGoogle Scholar
  37. 37.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12, 1843–1863 (2000). doi: 10.1063/1.870436 CrossRefADSGoogle Scholar
  38. 38.
    Abdel-Gayed, R.G., Bradley, D.: A two-eddy theory of premixed turbulent flame propagation. Philos. Trans. R. Soc. Lond. Ser. A 301, 1–25 (1981). doi: 10.1098/rsta.1981.0096 CrossRefADSGoogle Scholar
  39. 39.
    Fluent 6.3.26, 2007, Fluent Inc., Lebanon, NH (USA), website: (accessed on 26th March 2008)
  40. 40.
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. N. J. Phys. 6, 35 (2004). doi: 10.1088/1367-2630/6/1/035 CrossRefGoogle Scholar
  41. 41.
    Kader, B.A.: Temperature and concentration profiles in fully turbulent boundary layers. Int. J. Heat Mass Transfer 24, 1541–1544 (1981). doi: 10.1016/0017-9310(81)90220-9 CrossRefGoogle Scholar
  42. 42.
    Boudier, P., Henriot, S., Poinsot, T., Baritaud, T.: A model for turbulent flame ignition and propagation in piston engines. Proc. Combust. Inst. 24, 503–510 (1992)Google Scholar
  43. 43.
    Yu, G., Law, C.K., Wu, C.K.: Laminar flame speeds of hydrocarbon + air mixtures with hydrogen addition. Combust. Flame 63, 339–347 (1986). doi: 10.1016/0010-2180(86)90003-9 CrossRefGoogle Scholar
  44. 44.
    Di Sarli, V., Di Benedetto, A.: Laminar burning velocity of hydrogen-methane/air premixed flames. Int. J. Hydrogen Energy 32, 637–646 (2007). doi: 10.1016/j.ijhydene.2006.05.016 CrossRefGoogle Scholar
  45. 45.
    Poinsot, T., Veynante, D., Candel, S.: Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561–606 (1991). doi: 10.1017/s0022112091002823 ADSGoogle Scholar
  46. 46.
    Renard, P.-H., Rolon, J.C., Thévenin, D., Candel, S.: Wrinkling, pocket formation and double premixed flame interaction processes. Proc. Combust. Inst. 27, 659–666 (1998)Google Scholar
  47. 47.
    Samaniego, J.-M., Mantel, T.: Fundamental mechanisms in premixed turbulent flame propagation via flame–vortex interactions. Part I. Experiment. Combust. Flame 118, 537–556 (1999). doi: 10.1016/S0010-2180(99)00018-8 CrossRefGoogle Scholar
  48. 48.
    Renard, P.-H., Thévenin, D., Rolon, J.C., Candel, S.: Dynamics of flame–vortex interactions. Prog. Energy Combust. Sci. 26, 225–282 (2000). doi: 10.1016/S0360-1285(00)00002-2 CrossRefGoogle Scholar
  49. 49.
    Roberts, W.L., Driscoll, J.F.: A laminar vortex interacting with a premixed flame: measured formation of pockets of reactants. Combust. Flame 87, 245–256 (1991). doi: 10.1016/0010-2180(91)90111-N CrossRefGoogle Scholar
  50. 50.
    Roberts, W.L., Driscoll, J.F., Drake, M.C., Goss, L.P.: Images of the quenching of a flame by a vortex - to quantify regimes of turbulent combustion. Combust. Flame 94, 58–62 (1993). doi: 10.1016/0010-2180(93)90019-Y CrossRefGoogle Scholar
  51. 51.
    Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A.: A Fortran program for modeling steady laminar one-dimensional premixed flames. Sandia Report SAND85-8240 (1985)Google Scholar
  52. 52.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriaty, N.W., Eiteneer, B., Goldenberg, M., et al.: The “GRI-Mech 3.0” chemical kinetic mechanism. (1999) (accessed on 30th June 2008)
  53. 53.
    Sun, C.J., Sung, C.J., He, L., Law, C.K.: Dynamics of weakly stretched flames: quantitative description and extraction of global flame parameters. Combust. Flame 118, 108–128 (1999). doi: 10.1016/S0010-2180(98)00137-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • V. Di Sarli
    • 1
  • A. Di Benedetto
    • 1
  • G. Russo
    • 2
  • S. Jarvis
    • 3
  • E. J. Long
    • 3
  • G. K. Hargrave
    • 3
  1. 1.Istituto di Ricerche sulla CombustioneConsiglio Nazionale delle Ricerche (CNR)NaplesItaly
  2. 2.Dipartimento di Ingegneria ChimicaUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Wolfson School of Mechanical and Manufacturing EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations