Advertisement

Flow, Turbulence and Combustion

, Volume 83, Issue 2, pp 185–203 | Cite as

Towards Sensitizing the Nonlinear v 2 − f Model to Turbulence Structures

  • B. Anders Pettersson Reif
  • Mikael Mortensen
  • Carlos A. Langer
Article

Abstract

In this paper a one-way coupling between the nonlinear v 2 − f model by Pettersson Reif (Flow Turbul Combust 76:241–256, 2006) and an algebraic structure-based model have been investigated. Comparisons with available experimental and numerical data indicate that the compatibility between the two models is good and that their joint performance is satisfactory in the cases considered here. A full coupling between the models seems therefore a potentially viable route towards a significant advancement of engineering turbulence models and their predictive capabilities.

Keywords

Eddy-viscosity models Nonlinear v2 − f model Algebraic structure based model Elliptic relaxation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pope, S.B.: A more general eddy-viscosity hypothesis. J. Fluid Mech. 72, 331–340 (1975)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Taulbee, D.B.: An improved algebraic Reynolds stress model and corresponding nonlinear stress model. Phys. Fluids 4, 2555–2561 (1992)zbMATHCrossRefADSGoogle Scholar
  3. 3.
    Durbin, P.A.: Near-wall turbulence closure modeling without ‘damping’ functions. Theor. Comput. Fluid Dyn. 3, 1–13 (1991)zbMATHGoogle Scholar
  4. 4.
    Durbin, P.A., Pettersson Reif B.A.: The elliptic relaxation method. In: Closure Strategies for Turbulent and Transitional Flows, pp. 127–152. Cambridge University Press, Cambridge (2002)Google Scholar
  5. 5.
    Manceau, R., Hanjalic, K.: A new form of the elliptic relaxation equation to account for wall effects in RANS modeling. Phys. Fluids 12, 2345–2351 (2000)CrossRefADSGoogle Scholar
  6. 6.
    Shin, J.K., Chun, K.H., Choi, Y.D.: Refinement of a second moment closure by the elliptic blending equation and its application to turbulent rotating channel flow. J. Turbul. 4, 030 (2003)CrossRefADSGoogle Scholar
  7. 7.
    Manceau, R.: An improved version of the elliptic blending model: application to non-rotating and rotating channel flow. In: 4th Int. Symp. Turbulence and Shear Flow Phenomena, Williamsburg, June 2005Google Scholar
  8. 8.
    Parneix, H., Durbin, P.A., Behnia M.: Computation of 3-D turbulent boundary layers using the V2F model. Flow Turbul. Combust. 60, 19–46 (1998)zbMATHCrossRefGoogle Scholar
  9. 9.
    Parneix, H., Behnia, M., Durbin, P.A.: Predictions of turbulent heat transfer in an axisymmetric jet impinging on a heated pedestal. J. Heat Transfer 121, 43–49 (1999)CrossRefGoogle Scholar
  10. 10.
    Sveningsson, A., Pettersson Reif, B.A., Davidson, L.: Modelling the entrance region in a plane asymmetric diffuser by elliptic relaxation. In: 4th Int. Symp. Turbulence and Shear Flow Phenomena, Williamsburg, June 2005Google Scholar
  11. 11.
    Davidson, L., Farahnieh, B.: A finite-volume code employing collocated variable arrangement and Cartesian velocity components for computation of fluid flow and heat transfer in complex three-dimensional geometries. Thermo and Fluid Dynamics. Chalmers University of Technology, Rept. 95/11 (1995)Google Scholar
  12. 12.
    Durbin, P.A.: A Reynolds stress model for near-wall turbulence. J. Fluid Mech. 249, 465–498 (1993)CrossRefADSGoogle Scholar
  13. 13.
    Pettersson Reif, B.A.: Towards a nonlinear eddy viscosity model based on elliptic relaxation Flow Turbul. Combust. 76, 241–256 (2006)CrossRefGoogle Scholar
  14. 14.
    Rhie, C.M., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 2, 1525–1532 (1983)CrossRefADSGoogle Scholar
  15. 15.
    Langer C.A., Reynolds W.C.: A new algebraic structure-based turbulence model for rotating wall-bounded flows. Technical Report TF-85, Mechanical. Engineering Department, Stanford University (2003)Google Scholar
  16. 16.
    Haire, S.L., Reynolds W.C.: Toward an affordable two-equation structure-based turbulence model. Technical Report TF-84, Mechanical. Engineering Department, Stanford University (2003)Google Scholar
  17. 17.
    Kassinos, S.C., Reynolds W.C.: A structure-based model for the rapid distortion of homogeneous turbulence. Technical Report TF-61, Mechanical. Engineering Department, Stanford University (1994)Google Scholar
  18. 18.
    Reynolds, W.C., Kassinos, S.C., Langer, C.A., Haire, S.L.: New directions in turbulence modeling. Int. Symp. Turbulence, Heat, and Mass Transfer, (2005), Nagoya, 3–6 April 2000 (http://asbm.stanford.edu)
  19. 19.
    Kassinos, S.C., Reynolds, W.C., Rogers, M.M.: One-point turbulence structure tensors. J. Fluid Mech. 428, 213–248 (2001)zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Pettersson Reif, B.A., Gatski, T.B., Rumsey, C.L.: On the behaviour of two-equation models in non-equilibrium homogeneous turbulence. Phys. Fluids 18(6), 065108 (2006)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Rumsey, C.L., Pettersson Reif, B.A., Gatski, T.B.: Arbitrary steady-state solutions with the K-epsilon model. AIAA J. 44, 1586–1592 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Deldicque, A.: Etude de L’influence du nombre de Reynolds sur de ecoulements turbulents de Couette-Poiseuille a L’aide d’une approche experimentale et d’une modelisation aux constraintes de Reynolds. PhD thesis, No. d’ordre: 1618, University of Lille (1995)Google Scholar
  23. 23.
    Gilliot-Ottavy, A.: Characterisation par anemometrie a fils chauds d’ecoulements turbulents de Poiseuille et de Couette-Poiseuille en vue de la validation de modeles de turbulence PhD thesis, No. d’ordre: 2146, University of Lille (1997)Google Scholar
  24. 24.
    Orlandi, P.: Database of turbulent channel flow with moving walls. http://dma.ing.uniroma1.it/users/orlandi (2007)
  25. 25.
    Manceau, R., Wang, M., Durbin, P.A.: Assessment of non-local effect on pressure term in RANS modeling using a DNS database. In: Proc. Summer Program 1998, pp. 303–322. Center for Turbulence Research, Stanford (1998)Google Scholar
  26. 26.
    Lien, F.S., Durbin, P.A., Parneix S.: Non-linear v 2 − f modelling with application to aerodynamic flow. In: Proc. 11th Symposium on Turbulent Shear Flows, Grenoble, September 1997Google Scholar
  27. 27.
    Skote, M.: Studies of turbulent boundary layer flow through direct numerical simulations. PhD thesis, Royal Institute of Technology, Stockholm (2001)Google Scholar
  28. 28.
    Hoyas, S., Jimènez, J.: Scaling of velocity fluctuations in turbulent channels up to Re τ = 2000 Phys. Fluids 18, 011702 (2006)CrossRefADSGoogle Scholar
  29. 29.
    del Alamo, J.C., Jimènez, J., Zandonade, P., Moser, R.D.: Scaling of the energy spectra of turbulent channels J. Fluid Mech. 500, 135–144 (2004)zbMATHCrossRefADSGoogle Scholar
  30. 30.
    del Alamo, J.C., Jimènez, J.: Spectra of the very large anisotropic scales in turbulent channels Phys. Fluids 15, L41–L44 (2003)CrossRefGoogle Scholar
  31. 31.
    Carlier, J., Stanislas, M.: Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry J. Fluid Mech 535, 143–188 (2005)zbMATHCrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Durbin, P.A.: On the k − ε stagnation point anomaly. Int. J. Heat Fluid Flow 17, 89–90 (1995)CrossRefGoogle Scholar
  33. 33.
    Kassinos S.C., Langer, C.A., Kalitzin, G., Iaccarino, G.: A simplified structure-based model using standard turbulence scale equations: computation of rotating wall-bounded flows. Int. J. Heat Fluid Flow 27, 653–660 (2006)CrossRefGoogle Scholar
  34. 34.
    Manceau, R., Hanjalic, K.: Elliptic blending model: a new near-wall Reynolds-stress turbulence closure. Phys. Fluids 14, 3868–3879 (2002)CrossRefADSGoogle Scholar
  35. 35.
    Popovac, M., Hanjalic, K.: Compound wall treatment for RANS computation of complex turbulent flows and heat transfer. Flow Turbul. Combust. 78, 177–202 (2007)CrossRefGoogle Scholar
  36. 36.
    Reynolds, W.C., Langer, C.A., Kassinos, S.C.: Structure and scales in turbulence modeling Phys. Fluids 14, 2485-2492 (2002)CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • B. Anders Pettersson Reif
    • 1
    • 2
  • Mikael Mortensen
    • 1
  • Carlos A. Langer
    • 3
  1. 1.Norwegian Defence Research Establishment (FFI)KjellerNorway
  2. 2.Department of MathematicsUniversity of OsloOsloNorway
  3. 3.Department of Mechanical and Manufacturing EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations