Flow, Turbulence and Combustion

, Volume 82, Issue 3, pp 317–337 | Cite as

Turbulent Flow Produced by Piston Motion in a Spark-ignition Engine

  • V’yacheslav AkkermanEmail author
  • Mikhail Ivanov
  • Vitaly Bychkov


Turbulence produced by the piston motion in spark-ignition engines is studied by 2D axisymmetric numerical simulations in the cylindrical geometry as in the theoretical and experimental work by Breuer et al. (Flow Turbul Combust 74:145, 2005). The simulations are based on the Navier–Stokes gas-dynamic equations including viscosity, thermal conduction and non-slip at the walls. Piston motion is taken into account as a boundary condition. The turbulent flow is investigated for a wide range of the engine speed, 1,000–4,000 rpm, assuming both zero and non-zero initial turbulence. The turbulent rms-velocity and the integral length scale are investigated in axial and radial directions. The rms-turbulent velocity is typically an order-of-magnitude smaller than the piston speed. In the case of zero initial turbulence, the flow at the top-dead-center may be described as a combination of two large-scale vortex rings of a size determined by the engine geometry. When initial turbulence is strong, then the integral turbulent length demonstrates self-similar properties in a large range of crank angles. The results obtained agree with the experimental observations of Breuer et al. (Flow Turbul Combust 74:145, 2005).


Spark-ignition (SI) engine Piston motion Direct numerical simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breuer, S., Oberlack, M., Peters, N.: Non-isotropic length scales during the compression stroke of a motored piston engine. Flow Turbul. Combust. 74, 145 (2005)CrossRefGoogle Scholar
  2. 2.
    Williams, F.A.: Combustion Theory. Cummings, Menlo Park (1985)Google Scholar
  3. 3.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  4. 4.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Edwards, Ann-Arbor (2005)Google Scholar
  5. 5.
    Lee, T., Lee, S.: Direct comparison of turbulent burning velocity and flame surface properties. Combust. Flame 132, 492 (2003). doi:10.1016/S0010-2180(02)00495-9 CrossRefGoogle Scholar
  6. 6.
    Filatiev, S., Driscoll, J., Carter, C., Donbar, J.: Measured properties of turbulent premixed flames. Combust. Flame 141, 1 (2005). doi:10.1016/j.combustflame.2004.07.010 CrossRefGoogle Scholar
  7. 7.
    Savarianadam, V., Lawn, C.: Burning velocity of premixed turbulent flames. Combust. Flame 146, 1 (2006). doi:10.1016/j.combustflame.2006.05.002 CrossRefGoogle Scholar
  8. 8.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large Eddy simulations. Phys. Fluids 12, 1843 (2000). doi:10.1063/1.870436 CrossRefADSGoogle Scholar
  9. 9.
    Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K., Krebs, W., Kaufman, Veynante D., et al.: Compressible large Eddy simulation of turbulent combustion in complex geometry of unstructured meshes. Combust. Flame 137, 489 (2004). doi:10.1016/j.combustflame.2004.03.008 CrossRefGoogle Scholar
  10. 10.
    Akkerman, V., Bychkov, V., Eriksson, L.E.: Numerical study of turbulent flame velocity. Combust. Flame 151, 452 (2007). doi:10.1016/j.combustflame.2007.07.002 CrossRefGoogle Scholar
  11. 11.
    Peters, N., Wenzel, H., Williams, F.A.: Modification of the turbulent burning velocity by gas expansion. Proc. Combust. Inst. 28, 235 (2000)Google Scholar
  12. 12.
    Bychkov, V.: Importance of the Darrieus–Landau instability for turbulent flames. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 68, 066304 (2003). doi:10.1103/PhysRevE.68.066304 Google Scholar
  13. 13.
    Akkerman, V., Bychkov, V.: Velocity of weakly turbulent flames of finite thickness. Combust. Theory Model. 9, 323 (2005). doi:10.1080/13647830500098399 zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Bradley, D., Gaskell, P., Gu, X., Sedaghat, A.: Premixed flamelet modeling. Combust. Flame 143, 227 (2005). doi:10.1016/j.combustflame.2005.05.014 CrossRefGoogle Scholar
  15. 15.
    Petchenko, A., Bychkov, V., Eriksson, L.E., Oparin, A.: Flame propagation along the vortex axis. Combust. Theory Model. 10, 581 (2006). doi:10.1080/13647830600552006 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Bychkov, V., Petchenko, A., Akkerman, V.: On the theory of turbulent flame velocity. Combust. Sci. Technol. 179, 137 (2007)CrossRefGoogle Scholar
  17. 17.
    Lindborg, E.: Kinematics of homogeneous axisymmetric turbulence. J. Fluid Mech. 302, 179 (1995). doi:10.1017/S002211209500406X zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. 18.
    Oberlack, M.: Non-isotropic dissipation in non-homogeneous turbulence. J. Fluid Mech. 350, 351 (1997). doi:10.1017/S002211209700712X zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    Rouland, E., Trinite, M., Dionnet, F., Flocj, A., Ahmed, A.: Particle Image Velocimetry Measurements in an Engine, SAE 972831 (1997)Google Scholar
  20. 20.
    Hong, C., Tarng, S.: Direct measurement and computational analysis of turbulence length scales of a motored engine. Exp. Therm. Fluid Sci. 16, 277 (1998). doi:10.1016/S0894-1777(97)10035-8 CrossRefGoogle Scholar
  21. 21.
    Ramos, J.: Internal Combustion Engine Modeling. Hemisphere, London (1995)Google Scholar
  22. 22.
    Kume, T., Iwamoto, Y., Iida, K., Murakami, M., Akishino, K., Ando, H.: Combustion Control Technologies for SI Engine, SAE 960600 (1996)Google Scholar
  23. 23.
    Zhao, F., Lai, M., Harrington, D.: Automotive spark-ignited direct-injection gasoline engines. Prog. En. Combust. Sci. 25, 437 (1999). doi:10.1016/S0360-1285(99)00004-0 CrossRefGoogle Scholar
  24. 24.
    Nikitin, N., Yakhot, A.: Direct numerical simulation of turbulent flow in elliptical ducts. J. Fluid Mech. 532, 141 (2005). doi:10.1017/S0022112005003964 zbMATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    Yap, D., Megaritis, A., Wyszynski, M.: An experimental study of bio-ethanol HCCI. Combust. Sci. Technol. 177, 2039 (2005)CrossRefGoogle Scholar
  26. 26.
    Borman, G., Ragland, K.: Combustion Engineering. McGraw Hill, NY (1988)Google Scholar
  27. 27.
    Hirschfelder, J., Curtiss, C., Bird, R.: Molecular Theory—Gases and Liquids. Wiley, New York (1954)Google Scholar
  28. 28.
    Hilsenrath, J.: Tables of Thermodynamic and Transport Properties. Pergamon, London (1960)Google Scholar
  29. 29.
    Belotserkovsky, O.: Turbulence and Instabilities. Mzpress, Moscow (2003) (in English)Google Scholar
  30. 30.
    Belotserkovsky, O., Oparin, A., Chechetkin, V.: Turbulence: New Approaches. Cambridge Int. Sci. Publishing, Cambridge (2005)Google Scholar
  31. 31.
    Belotserkovsky, O., Davydov, Y.M.: Large-particle Method in Hydrodynamics. Nauka, Moscow (1982) (in Russian)Google Scholar
  32. 32.
    Liberman, M., Ivanov, M., Valiev, D., Eriksson, L.E.: Hot spot formation by the propagating flame and the influence of EGR on knock occurrence in SI engines. Combust. Sci. Technol. 178, 1613 (2006). doi:10.1080/00102200500536316 CrossRefGoogle Scholar
  33. 33.
    Landau, L., Lifshitz, E.: Fluid Mechanics. Pergamon, Oxford (1989)Google Scholar
  34. 34.
    Kobayashi, H., Kawazoe, H.: Flame instability effects on the smallest wrinkling scale of high-pressure turbulent premixed flames. Proc. Combust. Inst. 28, 375 (2000)CrossRefGoogle Scholar
  35. 35.
    Clavin, P., Williams, F.A.: Theory of premixed-flame propagation in large-scale turbulence. J. Fluid Mech. 90, 589 (1979). doi:10.1017/S002211207900241X zbMATHCrossRefADSGoogle Scholar
  36. 36.
    Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37, 2728 (1988). doi:10.1103/PhysRevA.37.2728 CrossRefADSGoogle Scholar
  37. 37.
    Denet, B.: Frankel equation for turbulent flames in the presence of a hydrodynamic instability. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55, 6911 (1997). doi:10.1103/PhysRevE.55.6911 Google Scholar
  38. 38.
    Kagan, L., Sivashinsky, G.: Flame propagation and extinction in large-scale vortical flows. Combust. Flame 120, 222 (2000). doi:10.1016/S0010-2180(99)00090-5 CrossRefGoogle Scholar
  39. 39.
    Bychkov, V., Denet, B.: Effect of temporal pulsations of a turbulent flow on the flame velocity. Combust. Theory Model. 6, 209 (2002). doi:10.1088/1364-7830/6/2/304 zbMATHCrossRefADSMathSciNetGoogle Scholar
  40. 40.
    Chen, Y.C., Bilger, R.: Experimental investigation of three-dimensional flame front structure in premixed turbulent combustion. Combust. Flame 131, 400 (2002). doi:10.1016/S0010-2180(02)00418-2 CrossRefGoogle Scholar
  41. 41.
    Swaminathan, N., Bray, K.: Effect of dilatation on scalar dissipation in turbulent premixed flames. Combust. Flame 143, 549 (2005). doi:10.1016/j.combustflame.2005.08.020 CrossRefGoogle Scholar
  42. 42.
    Swaminathan, N., Grout, R.: Interaction of turbulence and scalar fields in premixed flames. Phys. Fluids 18, 045102 (2006). doi:10.1063/1.2186590 CrossRefADSMathSciNetGoogle Scholar
  43. 43.
    Chakraborty, N., Swaminathan, N.: Influence of the damkohler number on turbulence-scalar interaction in premixed flames I. Phys. Fluids 19, 045103 (2007). doi:10.1063/1.2714070 CrossRefADSGoogle Scholar
  44. 44.
    Chakraborty, N., Swaminathan, N.: Influence of the damkohler number on turbulence-scalar interaction in premixed flames II. Phys. Fluids 19, 045104 (2007). doi:10.1063/1.2714076 CrossRefADSGoogle Scholar
  45. 45.
    Akkerman, V., Bychkov, V., de Goey, L., Bastiaans, R., van Oijen, J., Eriksson, L.-E.: Flow-flame interaction in a closed chamber. Phys. Fluids 20, 055107 (2008). doi:10.1063/1.2919807 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • V’yacheslav Akkerman
    • 1
    • 2
    • 3
    • 4
    Email author
  • Mikhail Ivanov
    • 1
    • 2
    • 3
  • Vitaly Bychkov
    • 1
  1. 1.Department of PhysicsUmea UniversityUmeaSweden
  2. 2.Nuclear Safety Institute of Russian Academy of SciencesMoscowRussia
  3. 3.Department of Physics and Power EngineeringMoscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia
  4. 4.Center for Turbulence ResearchStanford University/NASA Ames Research CenterStanfordUSA

Personalised recommendations