Flow, Turbulence and Combustion

, Volume 82, Issue 4, pp 537–551

Modelling of a Premixed Swirl-stabilized Flame Using a Turbulent Flame Speed Closure Model in LES

Article

Abstract

This paper proposes a combustion model based on a turbulent flame speed closure (TFC) technique for large eddy simulation (LES) of premixed flames. The model was originally developed for the RANS (Reynolds Averaged Navier Stokes equations) approach and was extended here to LES. The turbulent quantities needed for calculation of the turbulent flame speed are obtained at the sub grid level. This model was at first experienced via an test case and then applied to a typical industrial combustor with a swirl stabilized flame. The paper shows that the model is easy to apply and that the results are promising. Even typical frequencies of arising combustion instabilities can be captured. But, the use of compressible LES may also lead to unphysical pressure waves which have their origin in the numerical treatment of the boundary conditions.

Keywords

Large eddy simulation Combustion modelling Swirl burner Turbulent flame speed 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Roux, S., Lartique, G., Poinsot, T., Meier, U., Berat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141, 40–54 (2005)CrossRefGoogle Scholar
  2. 2.
    Fureby, C., Lofstrom, C.: Large eddy simulation of bluff body stabilized flames. In: Proceedings of the Combustion Institute, vol. 25, pp. 783–791. Combustion Institute, Pittsburgh (1994)Google Scholar
  3. 3.
    Fureby, C., Moller, S.I.: Large eddy simulation of reacting flows applied to bluff body stabilized flames. AIAA J 33(12), 2339–2347 (1995)MATHCrossRefADSGoogle Scholar
  4. 4.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids. 12, 1843–1863 (2000)CrossRefADSGoogle Scholar
  5. 5.
    Boger, M., Veynante, D., Boughanem, H., Trouve, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. In: 27th Symp. (Int) on Combustion, pp. 917–927. Combustion Institute, Pittsbugh (1998)Google Scholar
  6. 6.
    Williams, F. A.: Turbulent combustion. In: Buckmaster, J.D. (ed.) The Mathematics of Combustion, pp. 197–1318. Society for Industrial & Appied Mathematics, Philadelphia (1985)Google Scholar
  7. 7.
    Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995)Google Scholar
  8. 8.
    Peters, N.: The turbulent burning velocity for large scale and small scale turbulence. J. Fluid Mech. 384, 107–132 (1999)MATHCrossRefADSGoogle Scholar
  9. 9.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards, Philadelphia (2001)Google Scholar
  10. 10.
    Dinkelacker, F., Hölzler, S., Leipertz, A.: Investigations with a turbulent flame-speed-closure model for premixed turbulent flame calculations. Comb. Sci. Tech. 158, 321–340 (2000)CrossRefGoogle Scholar
  11. 11.
    Schmid, H.P., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame 113, 79–91 (1998)CrossRefGoogle Scholar
  12. 12.
    Schmid, H.P.: Ein Verbrennungsmodell zur Beschreibung der Wärmefreisetzung von vorgemischten turbulenten Flammen. Dissertation, University Karlsruhe (2000)Google Scholar
  13. 13.
    Smagorinsky, J.: General circulation experiments with the primitive equations, I, the basic experiment. Mon. Weather Rev. 91, 99–164 (1963)CrossRefADSGoogle Scholar
  14. 14.
    Polifke, W., Flohr, P., Brandt, M.: Modeling of inhomogeneously premixed combustion with an extended TFC model. In: Proceedings of ASME TURBO EXPO, paper 2000-GT-0135, Munich, 8–11 May 2000Google Scholar
  15. 15.
    Zimont, V.L., Polifke, W., Bettelini, M., Weisenstein, W.: An efficient computational model for premixed turbulent combustion at high Reynolds numbers based on a turbulent flame speed closure. J. Eng. Gas Turbine Power, Trans. ASME 120, 526–532 (1997)CrossRefGoogle Scholar
  16. 16.
    Hettel, M., Habisreuther, P., Bockhorn, H.: Unsteady Reynolds-Averaged Navier-Stokes (URANS) – modeling of flame transfer functions of turbulent premixed jet flames (paper: 670). In: Proceedings of Twelfth International Congress on Sound and Vibration (ICSV12), vol. CD-ROM. International Institute of Acoustics and Vibration, Auburn (2005)Google Scholar
  17. 17.
    Borghi, R.: Modelling of premixed turbulent combustion for smart control. In: 4th Symposium on Smart Control of Turbulence, Tokyo, 2–4 March 2003Google Scholar
  18. 18.
    Fröhlich, J.: Large eddy simulation turbulenter Strömungen. ISBN-10 3-8351-0104-8 (2006)Google Scholar
  19. 19.
    Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. In: Proceedings of the Summer Program, pp. 169–179. Stanford Summer Program (2000)Google Scholar
  20. 20.
    Zajadatz, M., Hettel, M., Leuckel, W.: Burning velocity of high-turbulence natural gas flames for gas turbine application. In: Proceedings of the International Gas Research Conference, pp. 793–803, San Diego, 8–11 November 1998Google Scholar
  21. 21.
    Leuckel, W., Lauer, G., Hirsch, C., Habisreuther, P.: Mathematische Modellierung der Wechselwirkung von Turbulenz und Reaktion unter den in Gasturbinenbrennkammern vorliegenden Bedingungen. Technischer Bericht 3.1.3.4, AG Hochtemperatur Gasturbine, Turboflam (1994)Google Scholar
  22. 22.
    Möllenstedt, T.: Untersuchung des Makrolängenmaßes und der turbulenten Brenngeschwindigkeit an geometrisch ähnlichen Modellbrennern. Diplomarbeit, Engler-Bunte-Institut, Division of Combustion Technology, University of Karlsruhe (TH), Germany (1999)Google Scholar
  23. 23.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 286, 652–665 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Bender, C., Büchner, H.: Noise emissions from a premixed swirl combustor. In: Twelfth International Congress on Sound and Vibration, Lisbon, 11–14 July 2005Google Scholar
  25. 25.
    Habisreuther, P., Bender, C., Petsch, O., Buechner, H., Bockhorn, H.: Prediction of pressure oscillations in a premixed swirl combustor flow and comparison to measurements. Flow Turbul. Combust. 77(14), 147–160 (2006)MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. Zhang
    • 1
  • P. Habisreuther
    • 1
  • M. Hettel
    • 1
  • H. Bockhorn
    • 1
  1. 1.University of KarlsruheKarlsruheGermany

Personalised recommendations