A Parallel Block-Structured Finite Volume Method for Flows in Complex Geometry with Sliding Interfaces

  • G. Usera
  • A. Vernet
  • J. A. Ferré


An implementation of the finite volume method is presented for the simulation of three dimensional flows in complex geometries, using block structured body fitted grids and an improved linear interpolation scheme. The interfaces between blocks are treated in a fully implicit manner, through modified linear solvers. The cells across block interfaces can be matching one-to-one or many-to-one. In addition, the use of sliding block interfaces allows the incorporation of moving rigid bodies inside the flow domain. An algebraic multigrid solver has been developed that works with this block structured approach, speeding up the iterations for the pressure. The flow solver is parallelized by domain decomposition using OpenMP, based on the same grid block structure. Application examples are presented that demonstrate these capabilities. This numerical model has been made freely available by the authors.


Finite volume Sliding interfaces Block structured OpenMP 


  1. 1.
    Albensoeder, S., Kuhlmann, H.C.: Accurate three-dimensional lid-driven cavity flow. J. Comput. Phys. 206, 536–558 (2005)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2002)zbMATHGoogle Scholar
  3. 3.
    Iwatsu, R., Hyun, J.M., Kuwahara, K.: Analyses of three dimensional flow calculations in a driven cavity. Fluid Dyn. Res. 6(2), 91–102 (1990)CrossRefADSGoogle Scholar
  4. 4.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)zbMATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Jiménez, A.: Interaccio entre les estructures de flux i el transport de materia. Aplicacio a un doll pla turbulent. Ph.D. thesis, URV (2003)Google Scholar
  6. 6.
    Lange, C.F., Schäfer, M., Durst, F.: Local block refinement with a multigrid solver. Int. J. Numer. Methods Fluids 38, 21–41 (2002)zbMATHCrossRefADSGoogle Scholar
  7. 7.
    Lehnhauser, T., Schäfer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Methods Fluids 38, 625–645 (2002)CrossRefADSGoogle Scholar
  8. 8.
    Lehnhauser, T., Schäfer, M.: Efficient discretization of pressure-correction equations on non-orthogonal grids. Int. J. Numer. Methods Fluids 42, 211–231 (2003)CrossRefADSGoogle Scholar
  9. 9.
    Lehnhauser, T., Ertem-Muller, S., Schafer, M., Janicka, J.: Advances in numerical methods for simulating turbulent flows. Prog. Comput. Fluid Dyn. 4(3–5), 208–228 (2004)CrossRefGoogle Scholar
  10. 10.
    Lilek, Z., Muzaferija, S., Peric, M., Seidl, V.: An implicit finite-volume method using nonmatching blocks of structured grid. Numer. Heat Transf. B 32, 385–401 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Mora Acosta, J.: Numerical algorithms for three dimensional computational fluid dynamic problems. Ph.D. thesis, UPC (2001)Google Scholar
  12. 12.
    Peric, M.: Numerical methods for computing turbulent flows. Course notes (2001)Google Scholar
  13. 13.
    Rhie, C.M., Chow, W.L.: A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA J. 21, 1525–1532 (1983)zbMATHCrossRefADSGoogle Scholar
  14. 14.
    Usera, G., Vernet, A., Ferré, J.A.: Use of time resolved PIV for validating LES/DNS of the turbulent flow within a PCB enclosure model. Flow Turbul. Combust. 77, 77–95 (2006)zbMATHCrossRefGoogle Scholar
  15. 15.
    Zaleski, S.: Science and fluid dynamics should have more open sources. (2001)

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.IMFIAUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Departament d’Enginyeria MecánicaUniversitat Rovira i VirgiliTarragonaSpain

Personalised recommendations