Flow, Turbulence and Combustion

, Volume 81, Issue 4, pp 563–582 | Cite as

Conditional Source-Term Estimation as a Method for Chemical Closure in Premixed Turbulent Reacting Flow

Article

Abstract

A Conditional Source-term Estimation (CSE) model is used to close the mean reaction rates for a turbulent premixed flame. A product-based reaction progress variable is introduced as the conditioning variable for the CSE method. Different presumed probability density function (PDF) models are studied and a modified version of a laminar flame-based PDF model is proposed. Improved predictions of the variable distribution are obtained. The conditional means of reactive scalars are evaluated with CSE and compared to the direct numerical simulation (DNS). The mean reaction rates in a turbulent premixed flame are evaluated with the CSE model and the presumed PDFs. Comparison of the CSE closure method to DNS shows promising results.

Keywords

Conditional source-term estimation Premixed flames Turbulent combustion 

References

  1. 1.
    Bilger, R.W.: Turbulent flows with nonpremixed reactants. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 65–113. Springer, Berlin (1980)Google Scholar
  2. 2.
    Libby, P.A., Williams, F.A.: A presumed PDF analysis of partially premixed turbulent combustion. Combust. Sci. Technol. 161, 351–390 (2001)CrossRefGoogle Scholar
  3. 3.
    Jaberi, F.A., Miller, R.S., Givi, P.: Conditional statistics in turbulent scalar mixing and reaction. AIChE J. 42, 1149–1152 (1996)CrossRefGoogle Scholar
  4. 4.
    Jaberi, F.A., Miller, R.S., Madnia, C.K, Givi, P.: Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313, 241–282 (1996)MATHCrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Ribert, G., Champion, M., Plion, P.: Modelling turbulent reactive flows with variable equivalence ratio: application to the calculation of a reactive shear layer. Combust. Sci. Technol. 176(5/6), 907–924 (2004)CrossRefGoogle Scholar
  6. 6.
    Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143(4), 566–586 (2005)CrossRefGoogle Scholar
  7. 7.
    Klimenko, A.Y.: Multicomponent diffusion of various admixtures in turbulent flow. Fluid Dyn. 25, 327–334 (1990)MATHCrossRefGoogle Scholar
  8. 8.
    Bilger, R.W.: Conditional moment closure for turbulent reacting flow. Phys. Fluids 5(2), 436–444 (1993)MATHCrossRefADSGoogle Scholar
  9. 9.
    Kim, S.H., Huh, K.Y., Fraser, R.A.: Modeling autoignition of a turbulent methane jet by the conditional moment closure model. Proc. Combust. Inst. 28, 185–191 (2000)CrossRefGoogle Scholar
  10. 10.
    Roomina, M., Bilger, R.W.: Conditional moment closure (CMC) predicting of a turbulent methane-air flame. Combust. Flame 125, 1176–1195 (2001)CrossRefGoogle Scholar
  11. 11.
    Kim, S.H., Huh, K.Y.: Use of the conditional moment closure model to predict no formation in a turbulent CH4/H2 flame over a bluff body. Combust. Flame 130, 94–111 (2002)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Kim, S.H., Huh, K.Y., Bilger, R.W.: Second-order conditional moment closure modeling of local extinction and reignition in turbulent non-premixed hydrocarbon flames. Proc. Combust. Inst. 29, 2131–2137 (2002)CrossRefGoogle Scholar
  13. 13.
    Devaud, C., Bray, K.N.C.: Assessment of the applicability of the conditional moment closure model to a lifted turbulent flame: first order model. Combust. Flame 132, 102–114 (2003)CrossRefGoogle Scholar
  14. 14.
    Klimenko, A.Y., Bilger, R.W.: Conditional moment closure for turbulent combustion. Progr. Energy Combust. Sci. 25, 595–687 (1999)CrossRefGoogle Scholar
  15. 15.
    Swaminathan, N., Bilger, R.W.: Analysis of conditional moment closure for turbulent premixed flames. Combust. Theory Model. 5, 241–260 (2001)MATHCrossRefADSGoogle Scholar
  16. 16.
    Martin, S.M., Kramlich, J.C., Kosaly, G., Riley, J.J.: The premixed conditional moment closure method applied to idealized leean premixed gas turbine combustors. J. Eng. Gas Turbine Power 125, 895–900 (2003)CrossRefGoogle Scholar
  17. 17.
    Bushe, W.K., Steiner, H.: Conditional moment closure for large eddy simulation of non-premixed turbulent reacting flows. Phys. Fluids 11(7), 1896–1906 (1999)CrossRefADSMATHGoogle Scholar
  18. 18.
    Steiner, H., Bushe, W.K.: Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13(3), 754–769 (2001)CrossRefADSGoogle Scholar
  19. 19.
    Sandia/TUD piloted CH4/Air Jet Flames (2007), http://public.ca.sandia.gov/TNF/DataArch/FlameD.html. Accessed 28 August 2007
  20. 20.
    Grout, R., Bushe, W.K., Blair, C.: Predicting the ignition delay of turbulent methane jets using conditional source-term estimation. Combust. Theory Model. 11(6), 1009–1028 (2007)MATHCrossRefGoogle Scholar
  21. 21.
    Bushe, W.K., Steiner, H.: Laminar flamelet decomposition for conditional source-term estimation. Phys. Fluids 15(6), 1564–1575 (2003)CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Huang, J., Bushe, W.K.: Simulation of an igniting methane jet using conditional source-term estimation with a trajectory generated low-dimensional manifold. Combust. Theory Model. 11(6), 977–1008 (2007)MATHCrossRefGoogle Scholar
  23. 23.
    Wang, M., Huang, J., Bushe, W.K.: Simulation of a turbulent non-premixed flame using conditional source-term estimation with trajectory generated low-dimensional manifold. Proc. Combust. Inst. 31(2), 1701–1709 (2006)CrossRefGoogle Scholar
  24. 24.
    Bray, K.N.C., Champion, M., Libby, P.A., Swaminathan, N.: Finite rate chemistry and presumed PDF models for premixed turbulent combustion. Combust. Flame 146(7), 665–673 (2006)CrossRefGoogle Scholar
  25. 25.
    Grout, R.: An age extended progress variable for conditioning reaction rates. Phys. Fluids 19, 105107 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Jenkins, K.W., Cant, R.S.: Flame kernel interaction in turbulent environment. In: Third AFOSR Conference on DNS and LES, pp. 605–612, Arlington, 5–9 August 1999Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringThe University of British ColumbiaVancouverCanada
  2. 2.Department of EngineeringThe University of CambridgeCambridgeUK
  3. 3.Combustion Research FacilitySandia National LaboratoriesLivermoreUSA

Personalised recommendations