New Molecular Transport Model for FDF/LES of Turbulence with Passive Scalar

Special Issue THMT06
  • M. WacławczykEmail author
  • J. Pozorski
  • J.-P. Minier


The paper addresses the issue of modelling and computation of wall-bounded turbulent flows with passive scalars. In the present approach, the large eddy simulation (LES) method is used to compute the velocity field in the near-wall zone. The LES is coupled with the Lagrangian filtered density function (FDF) model for the transport of a passive scalar. In the paper, we propose two models to account for the molecular transport near the wall and investigate their behaviour in the limit case of small filter widths. One of the models is tested numerically, and computational results for a heated channel flow are compared with the available DNS data.


Filtered density function Large eddy simulations Near-wall flows 


  1. 1.
    Bergstrom, D.J., Yin, J., Wang, B.C.: LES of near-wall turbulent heat transfer using dynamic SGS models. In: Hanjalić, K., Nagano, Y., Tummers, M. (eds.) Turbulence, Heat and Mass Transfer 4. Begell House, Inc. (2004)Google Scholar
  2. 2.
    Bradshaw P.: Turbulence: the chief outstanding difficulty of our subject. Exp. Fluids 16, 203–216 (1994)CrossRefGoogle Scholar
  3. 3.
    Dreeben, T.D., Pope, S.B.: Probability density function/Monte Carlo simulation of near-wall turbulent flows. J. Fluid Mech. 357, 141–167 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Chen, J.-Y.: A Eulerian PDF scheme for LES of nonpremixed turbulent combustion with second-order accurate mixture fraction. Combust. Theory Model. 11, 675–695 (2007)zbMATHCrossRefGoogle Scholar
  5. 5.
    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10, 499–515 (1998)zbMATHCrossRefADSMathSciNetGoogle Scholar
  6. 6.
    Dopazo, C.: Recent developments in PDF methods. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp. 375–474. Academic, New York (1994)Google Scholar
  7. 7.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    Iwamoto, K.: Database of Fully Developed Channel Flow. THTLAB Internal Report, No. ILR-0201. The Univ. of Tokyo (2002)Google Scholar
  9. 9.
    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14, 1196–1213 (2002)zbMATHCrossRefADSMathSciNetGoogle Scholar
  10. 10.
    Jaberi, F.A., Colucci, P.J.: Large eddy simulation of heat and mass transport in turbulent flows. Part 2: Scalar field. Int. J. Heat Mass Transfer 46, 1827–1840 (2003)zbMATHCrossRefGoogle Scholar
  11. 11.
    Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer (1992)Google Scholar
  12. 12.
    Launder B.E.: On the computation of convective heat transfer in complex turbulent flow. J. Heat Transfer 110, 1112–1128 (1988)CrossRefGoogle Scholar
  13. 13.
    Lesieur, M.: Turbulence in Fluids. Kluwer, Dordrecht (1995)Google Scholar
  14. 14.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 3, 633–635 (1992)CrossRefADSGoogle Scholar
  15. 15.
    Möbus, H., Gerlinger, P., Brüggemann, D.: Comparison of Eulerian and Lagrangian Monte Carlo PDF methods for turbulent diffusion flames. Combust. Flame 124, 519–534 (2001)CrossRefGoogle Scholar
  16. 16.
    Moin, P., Squires, K.D., Cabot, W.H., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids 11, 2746–2757 (1991)ADSGoogle Scholar
  17. 17.
    Peirano, E., Chibbaro, S., Pozorski, J., Minier, J.-P.: Mean-field/PDF numerical approach for polydispersed turbulent two-phase flows. Prog. Energy Combust. Sci. 32, 315–371 (2006)CrossRefGoogle Scholar
  18. 18.
    Peng, S.H., Davidson, L.: On a subgrid-scale heat flux model for large eddy simulation of turbulent thermal flow. Int. J. Heat Mass Transfer 45, 1393–1405 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    Piomelli, U., Balaras, E.: Wall-layer models for large-eddy simulations. Annu. Rev. Fluid Mech. 34, 349–374 (2002)CrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)Google Scholar
  22. 22.
    Pozorski, J., Minier, J.-P.: Stochastic modelling of conjugate heat transfer in near-wall turbulence. Int. J. Heat Fluid Flow 27, 867–877 (2006)CrossRefGoogle Scholar
  23. 23.
    Pozorski, J., Wacławczyk, M., Minier, J.-P.: Full velocity-scalar PDF computation of heated channel flow with wall function approach. Phys. Fluids 15, 1220–1232 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Pozorski, J., Wacławczyk, M., Minier, J.-P.: Probability density function computation of heated turbulent channel flow with the bounded Langevin model. J. Turbul. 4, 011 (2003)CrossRefADSGoogle Scholar
  25. 25.
    Pozorski, J., Wacławczyk, M., Minier, J.-P.: Scalar and joint velocity-scalar PDF modelling of near-wall turbulent heat transfer. Int. J. Heat Fluid Flow 25, 884–895 (2004)CrossRefGoogle Scholar
  26. 26.
    Salvetti, M.V., Banerjee S.: A priori tests of a new dynamic subgrid-scale model for finite-difference large-eddy simulations. Phys. Fluids 11, 2831–2847 (1995)CrossRefADSGoogle Scholar
  27. 27.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin (1998)Google Scholar
  28. 28.
    Sternel, D.C. (ed.): FASTEST-Manual. Technical Report, Fachgebiet Numerische Berechnungsverfahren im Maschinenbau, Technische Universität Darmstadt (2005)Google Scholar
  29. 29.
    Tiselj, I., Bergant, R., Mavko, B., Bajsić, I., Hetsroni, G.: DNS of turbulent heat transfer in channel flow with heat conduction in the solid wall. J. Heat Transfer 123, 849–857 (2001)CrossRefGoogle Scholar
  30. 30.
    Valiño, L., Dopazo, C.: A binomial Langevin model for turbulent mixing. Phys. Fluids A 3, 3034–3037 (1991)zbMATHCrossRefADSGoogle Scholar
  31. 31.
    Wacławczyk, M., Pozorski, J., Minier, J.-P.: PDF computation of turbulent flows with a new near-wall model. Phys. Fluids 16, 1410–1422 (2004)CrossRefADSGoogle Scholar
  32. 32.
    Wang, L., Dong, Y.-H., Lu, X.-Y.: Large eddy simulation of turbulent open channel flow with heat transfer at high Prandtl numbers. Acta Mech. 170, 227–246 (2004)zbMATHCrossRefGoogle Scholar
  33. 33.
    Xu, J., Pope, S.B.: Assessment of numerical accuracy in PDF/Monte Carlo methods for turbulent reacting flows. J. Comput. Phys. 152, 192–230 (1999)zbMATHCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Institute of Fluid-Flow MachineryPolish Academy of SciencesGdańskPoland
  2. 2.Electricité de FranceChatouFrance

Personalised recommendations