Flow, Turbulence and Combustion

, Volume 80, Issue 1, pp 81–105 | Cite as

Large Eddy Simulation of Turbulent Reacting Shear Layers Including Finite-Rate Chemistry and Detailed Diffusion Processes

  • I. MahleEmail author
  • J. Sesterhenn
  • R. Friedrich


Large eddy simulations (LES) of turbulent temporal shear layers with hydrogen chemistry are performed. In these simulations, approximate deconvolution is applied as an implicit subgrid-scale modeling approach to a reacting flow in combination with a steady flamelet model for the filtered heat release term. No additional heuristical or physical subgrid models are used. The formulation of the flamelet equations in physical space does not only allow to consider a detailed reaction scheme and the extinguished phase but also to take into account detailed diffusion mechanisms (Soret and Dufour effects, multicomponent diffusion coefficients). Two different levels of diffusion approximations are investigated in this work, the aim of which is twofold: Firstly, to verify approximate deconvolution as a tool for convective transport of mass, momentum and energy in gas flow, by comparing the LES results with those of a direct numerical simulation and secondly, to investigate the influence of detailed diffusion on the laminar flamelets and the LES results.


Large eddy simulation Turbulent flames Steady flamelets Detailed diffusion Approximate deconvolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hilbert, R., Tap, F., El-Rabii, H., Thévenin, D.: Impact of detailed chemistry and transport models on turbulent combustion simulations. Prog. Energy Combust. Sci. 30, 61–117 (2004)CrossRefGoogle Scholar
  2. 2.
    de Charentenay, J., Ern, A.: Multicomponent transport impact on turbulent premixed H2/O2 flames. Combust. Theor. Model. 6, 439–462 (2002)CrossRefADSGoogle Scholar
  3. 3.
    Pierce, C.D., Moin, P.: Progress-variable approach for large eddy simulation of turbulent combustion. Report No. TF-80, Stanford University, Stanford, CA (2001)Google Scholar
  4. 4.
    Stolz, S., Adams, N.A.: An approximate deconvolution procedure for Large-Eddy Simulation. Phys. Fluids 11(7), 1699–1701 (1999)CrossRefADSGoogle Scholar
  5. 5.
    Stolz, S., Adams, N.A., Kleiser, L.: An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. Phys. Fluids 13, 997–1015 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Pierce, C.D., Moin, P.: Progress-variable apporach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)zbMATHCrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Cuenot, B., Poinsot, T.: Asymptotic and numerical study of diffusion flames with variable Lewis number and finite rate chemistry. Combust. Flame 104, 111–137 (1996)CrossRefGoogle Scholar
  8. 8.
    Nilsen, V., Kosály, G.: Differential diffusion in turbulent reacting flows. Combust. Flame 117, 493–513 (1999)CrossRefGoogle Scholar
  9. 9.
    Pitsch, H., Peters, N.: A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust. Flame 114, 26–40 (1998)CrossRefGoogle Scholar
  10. 10.
    Adams, N.A., Leonard, A.: Deconvolution of subgrid-scales for the simulation of shock-turbulence interaction. In: Voke, P., Sandham, N.D., Kleiser, L. (eds.) Direct and Large-Eddy Simulation III, pp. 201–212. Kluwer, Dordrecht (1999)Google Scholar
  11. 11.
    Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15, 2279–2289 (2003)CrossRefADSGoogle Scholar
  12. 12.
    Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid. Mech. 30, 539–578 (1998)CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 2nd edn. R.T. Edwards (2005)Google Scholar
  14. 14.
    Domaradzki, J.A., Adams, N.A.: Direct modelling of subgrid scales of turbulence in large-eddy simulation. J. Turbulence 3, 024 (2002)CrossRefADSGoogle Scholar
  15. 15.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Cook, A.W., Riley, J.J., Kosály, G.: A laminar flamelet approach to subgrid-scale chemistry in turbulent flows. Combust. Flame 109, 332–341 (1997)CrossRefGoogle Scholar
  17. 17.
    de Bruyn Kops, S.M., Riley, J.J., Kosály, G.: Investigation of modeling for nonpremixed turbulent combustion. Flow Turbul. Combust. 60, 105–122 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    Peters N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10, 319–339 (1984)CrossRefGoogle Scholar
  19. 19.
    Gardiner W.: Combustion Chemistry. Springer, New York (1984)Google Scholar
  20. 20.
    Miller, J.A., Mitchell, R.E., Smoke, M.D., Kee, R.J.: Toward a comprehensive chemical kinetic mechanism for the oxidation of acetylene: comparison of model predictions with results from flame and shock tube experiments. Proc. Combust. Inst. 19, 181–196 (1982)Google Scholar
  21. 21.
    Ern, A., Giovangigli, V.: Fast and accurate multicomponent transport property evaluation. J. Comput. Phys. 120, 105–116 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sutherland, J.C.: Evaluation of mixing and reaction models for large-eddy simulation of nonpremixed combustion using direct numerical simulation. Dissertation, University of Utah (2004)Google Scholar
  23. 23.
    Smith, L.L., Dibble, R.W., Talbot, L., Barlow, R.S., Carter, C.D.: Laser raman scattering measurements of differential molecular diffusion in turbulent nonpremixed jet flames of H2/CO2 fuel. Combust. Flame 100, 153–160 (1995)CrossRefGoogle Scholar
  24. 24.
    Bilger, R.W., Stårner, S.H., Kee, R.J.: On reduced mechanisms for methane-air combustion in nonpremixed flames. Combust. Flame 80, 135–149 (1990)CrossRefGoogle Scholar
  25. 25.
    Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)CrossRefGoogle Scholar
  26. 26.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B.: Molecular Theory of Gases. Wiley, New York (1964)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Fachgebiet StrömungsmechanikTechnische Universität MünchenGarchingGermany

Personalised recommendations