Advertisement

Developments in Formulation and Application of the Filtered Density Function

  • T. G. Drozda
  • M. R. H. SheikhiEmail author
  • C. K. Madnia
  • P. Givi
Article

Abstract

An overview is presented of the state of progress in large eddy simulation of turbulent combustion via the filtered density function (FDF). This includes the formulations based on both the joint velocity-scalar FDF, and the marginal scalar FDF. In the former, the most up-to-date and comprehensive form of the model is presented along with its applications for LES of some relatively simple flows. In the latter, results are presented of the most recent LES of a complex turbulent flame. Both of the models are described in the context of a variable density flow via consideration of the filtered mass density function (FMDF).

Key words

large eddy simulation filtered density function turbulent combustion nonpremixed flames 

Notes

Acknowledgments

We are indebted to Professor Stephen B. Pope (Cornell University) for his collaboration on various aspects of this work. We are also indebted to Dr. Laurent Y.M. Gicquel (CERFACS, Toulouse) for his excellent comments on the earlier version of this manuscript. Our current research in LES/FDF is being sponsored by the U.S. Air Force Office of Scientific Research under Grant FA9550-06-1-0015 (Program Manager: Dr. Julian M. Tishkoff), the National Science Foundation under Grant CTS-0426857, and the Office of the Secretary of Defense under Contract FA9101-04-C-0014. Acknowledgment is also made to the Donors of the Petroleum Research Funds administrated by the American Chemical Society for their support under Grant ACS-PRF 41222-AC9. The computations were performed on the National Science Foundation Terascale Computing System at the Pittsburgh Supercomputing Center.

References

  1. 1.
    Sandia National Laboratories, TNF Workshop website. http://www.ca.sandia.gov/TNF/ (2006)
  2. 2.
    University of Sydney, Thermal Research Group website, Bluff-Body Flames. http://www.mech.eng.usyd.edu.au/thermofluids/bluff.htm (2006)
  3. 3.
    Battaglia, F., McGrattan, K.B., Rehm, R.G., Baum, H.R.: Simulating fire whirls. Combust. Theory Model. 4(3), 123–138 (2000)zbMATHADSGoogle Scholar
  4. 4.
    Bilger, R.W.: Molecular transport effects in turbulent diffusion flames at moderate Reynolds number. AIAA J. 20, 962–970 (1982)zbMATHADSGoogle Scholar
  5. 5.
    Bilger, R.W.: Future progress in turbulent combustion research. Prog. Energy Combust. Sci. 26(4–6), 367–380 (2000)Google Scholar
  6. 6.
    Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30, 21–42 (2005)Google Scholar
  7. 7.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulations. Fluid Dyn. Res. 10, 199–238 (1992)Google Scholar
  8. 8.
    Bowman, C.T., Hanson, R.K., Gardiner, W.C., Lissianski, V., Frenklach, M., Goldenberg, M., Smith, G.P., Crosley, D.R., Golden, D.M.: GRI-mech 2.11–an optimized detailed chemical reaction mechanism for methane combustion and NO formation and reburning. Report GRI-97/0020, Gas Research Institute, Chicago, Illinois (1997)Google Scholar
  9. 9.
    Brodkey, R.S. (ed.) Turbulence in Mixing Operation. Academic, New York, New York (1975)Google Scholar
  10. 10.
    Bushe, W.K., Steiner, H.: Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows. Phys. Fluids 11(7), 1896–1906 (1999)ADSzbMATHGoogle Scholar
  11. 11.
    Candel, S., Thevenin, D., Darabiha, N., Veynante, D.: Progress in numerical combustion. Combust. Sci. Technol. 149, 297–337 (1999)Google Scholar
  12. 12.
    Carpenter, M.H.: A high-order compact numerical algorithm for supersonic flows. In: Morton, K.W. (ed.) Twelfth International Conference on Numerical Methods in Fluid Dynamics, vol. 371 of Lecture Notes in Physics, pp. 254–258. Springer, Berlin Heidelberg New York (1990)Google Scholar
  13. 13.
    Cha, C.M., Troullet, P.: A subgrid-scale mixing model for large-eddy simulations of turbulent reacting flows using the filtered density function. Phys. Fluids 15(6), 1496–1504 (2003)ADSGoogle Scholar
  14. 14.
    Chandy, A., Goldin, G.M., Frankel, S.H.: Modeling turbulent nonpremixed jet flames using Fluent's PDF transport model: Effect of mixing model on flame extinction. In: 30th International Symposium on Combustion, Abstracts of Work-In-Progress Posters, pp. 447. The Combustion Institute, Pittsburgh, Pennsylvania (2004)Google Scholar
  15. 15.
    Collin, O., Ducros, F., Veynate, D., Poinsot, T.: A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)ADSGoogle Scholar
  16. 16.
    Colucci, P.J.: Large Eddy Simulation of Turbulent Reactive Flows: Stochastic Representation of the Subgrid Scale Scalar Fluctuations. PhD Thesis, Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York (1998)Google Scholar
  17. 17.
    Colucci, P.J., Jaberi, F.A., Givi, P., Pope, S.B.: Filtered density function for large eddy simulation of turbulent reacting flows. Phys. Fluids 10(2), 499–515 (1998)MathSciNetADSzbMATHGoogle Scholar
  18. 18.
    Cook, A.W., Riley, J.J.: A subgrid model for equilibrium chemistry in turbulent flows. Phys. Fluids 6(8), 2868–2870 (1994)ADSGoogle Scholar
  19. 19.
    Cook, A.W., Riley, J.J.: Progress in subgrid-scale combustion modeling. In: Hafez, M., Oshima, K. (eds.) Computational Fluid Dynamics Review 1998, pp. 914–931. World Scientific, Singapore (1998)Google Scholar
  20. 20.
    Dally, B.B., Fletcher, D.F., Masri, A.R.: Modelling of turbulent flames stabilised on a bluff-body. Combust. Theory Model. 2, 193–219 (1998)zbMATHADSGoogle Scholar
  21. 21.
    Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J.: Instantaneous and mean compositional structure of bluff-body stabilized nonpremixed flames. Combust. Flame 114, 119–148 (1998)Google Scholar
  22. 22.
    Dally, B.B., Masri, A.R., Barlow, R.S., Fiechtner, G.J., Fletcher, D.F.: In: Proceedings of 26th Symposium (Int.) on Combustion. The Combustion Institute, Pittsburgh, Pennsylvania (1996)Google Scholar
  23. 23.
    Delarue, B.J., Pope, S.B.: Application of PDF methods to compressible turbulent flows. Phys. Fluids 9(9), 2704–2715 (1997)MathSciNetADSzbMATHGoogle Scholar
  24. 24.
    Delarue, B.J., Pope, S.B.: Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods. Phys. Fluids 10(2), 487–498 (1998)MathSciNetADSzbMATHGoogle Scholar
  25. 25.
    DesJardin, P.E., Frankel, S.H.: Large eddy simulation of a turbulent nonpremixed reacting jet: Application and assessment of subgrid-scale combustion models. Phys. Fluids 10(9), 2298–2314 (1998)ADSGoogle Scholar
  26. 26.
    DesJardin, P.E., Frankel, S.H.: Two-dimensional large eddy simulation of soot formation in the near-field of a strongly radiating nonpremixed acetylene-air turbulent jet flame. Combust. Flame 119, 121–132 (1999)Google Scholar
  27. 27.
    Dreeben, T.D., Pope, S.B.: Probability density function and Reynolds-stress modeling of near-wall turbulent flows. Phys. Fluids 9(1), 154–163 (1997)MathSciNetADSGoogle Scholar
  28. 28.
    Drozda, T.G.: Large Eddy Simulation of a Piloted Diffusion Flame (Sandia Flame D) and a Bluff-Body Flame (Sydney Flame). Ph.D Thesis, Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania (2005)Google Scholar
  29. 29.
    Forkel, H., Janicka, J.: Large-eddy simulation of a turbulent hydrogen diffusion flame. Flow Turbul. Combust. 65(2), 163–175 (2000)zbMATHGoogle Scholar
  30. 30.
    Fox, R.O.: Computational Models for Turbulent Reacting Flows. Cambridge University Press, Cambridge, UK (2003)Google Scholar
  31. 31.
    Frankel, S.H., Adumitroaie, V., Madnia, C.K., Givi, P.: Large eddy simulations of turbulent reacting flows by assumed PDF methods. In: Ragab, S.A., Piomelli, U. (eds.) Engineering Applications of Large Eddy Simulations, FED-Vol. 162, pp. 81–101. ASME, New York, New York (1993)Google Scholar
  32. 32.
    Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37(5), 544 (1999)ADSGoogle Scholar
  33. 33.
    Fureby, C., Lofstrom, C.: Large-eddy simulations of bluff body stabilized flames. Proc. Combust. Inst. 25, 1257–1264 (1994)Google Scholar
  34. 34.
    Gaffney, R.L., White, J.A., Girimaji, S.S., Drummond, J.P.: Modeling of temperature and species fluctuations in turbulent, reacting flow. Comput. Syst. Eng. 5(2), 117–113 (1994)Google Scholar
  35. 35.
    Geurts, B.J. (ed.) Modern Simulation Strategies for Turbulent Flow. R. T. Edwards, Philadelphia, Pennsylvania (2001)Google Scholar
  36. 36.
    Gicquel, L.Y.M.: Velocity Filtered Density Function for Large Eddy Simulation of Turbulent Flows. PhD Dissertation, Department of Mechanical and Aerospace Engineering, University at Buffalo, State University of New York, Buffalo, New York (2001)Google Scholar
  37. 37.
    Gicquel, L.Y.M., Givi, P., Jaberi, F.A., Pope, S.B.: Velocity filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 14(3), 1196–1213 (2002)MathSciNetADSzbMATHGoogle Scholar
  38. 38.
    Givi, P.: Model free simulations of turbulent reactive flows. Prog. Energy Combust. Sci. 15, 1–107 (1989)ADSGoogle Scholar
  39. 39.
    Givi, P.: Filtered density function for subgrid scale modeling of turbulent combustion. AIAA J. 44(1), 16–23 (2006)ADSGoogle Scholar
  40. 40.
    Glaze, D.J., Frankel, S.H., Hewson, J.C.: Non-premixed turbulent jet mixing using LES with the FMDF model. In: 30th International Symposium on Combustion, Abstracts of Work-In-Progress Posters, p. 79. The Combustion Institute, Pittsburgh, Pennsylvania (2004)Google Scholar
  41. 41.
    Grigoriu, M.: Applied Non-Gaussian Processes. Prentice-Hall, Englewood Cliffs, New Jersey (1995)zbMATHGoogle Scholar
  42. 42.
    Haworth, D.C., Pope, S.B.: A Generalized Langevin Model for turbulent flows. Phys. Fluids 29(2), 387–405 (1986)zbMATHMathSciNetADSGoogle Scholar
  43. 43.
    Haworth, D.C., Pope, S.B.: A second-order Monte Carlo method for the solution of the Ito stochastic differential equation. Stoch. Anal. Appl. 4(2), 151–186 (1986)zbMATHMathSciNetGoogle Scholar
  44. 44.
    Haworth, D.C., Pope, S.B.: Monte Carlo solutions of a joint PDF equation for turbulent flows in general orthogonal coordinates. J. Comput. Phys. 72(2), 311–346 (1987)zbMATHADSGoogle Scholar
  45. 45.
    Heinz, S.: On Fokker–Planck equations for turbulent reacting flows. Part 2. Filtered density function for large eddy simulation. Flow Turbul. Combust. 70, 153–181 (2003)zbMATHGoogle Scholar
  46. 46.
    Heinz, S.: Statistical Mechanics of Turbulent Flows. Springer, Berlin Heidelberg New York (2003)Google Scholar
  47. 47.
    Hossain, M., Jones, J.C., Malalasekera, W.: Modelling of a bluff-body nonpremixed flame using a coupled radiation/flamelet combustion model. Flow Turbul. Combust. 67, 217–240 (2001)zbMATHGoogle Scholar
  48. 48.
    Jaberi, F.A., Colucci, P.J., James, S., Givi, P., Pope, S.B.: Filtered mass density function for large eddy simulation of turbulent reacting flows. J. Fluid Mech. 401, 85–121 (1999)zbMATHADSGoogle Scholar
  49. 49.
    Jaberi, F.A., James, S.: A dynamic similarity model for large eddy simulation of turbulent combustion. Phys. Fluids 10(7), 1775–1777 (1998)ADSGoogle Scholar
  50. 50.
    Jaberi, F.A., Miller, R.S., Madnia, C.K., Givi, P.: Non-Gaussian scalar statistics in homogeneous turbulence. J. Fluid Mech. 313, 241–282 (1996)zbMATHMathSciNetADSGoogle Scholar
  51. 51.
    Jaberi, F.A., Miller, R.S., Mashayek, F., Givi, P.: Differential diffusion in binary scalar mixing and reaction. Combust. Flame 109, 561–577 (1997)Google Scholar
  52. 52.
    James, S., Jaberi, F.A.: Large scale simulations of two-dimensional nonpremixed methane jet flames. Combust. Flame 123, 465–487 (2000)Google Scholar
  53. 53.
    Janicka, J., Sadiki, A.: Large eddy simulation of turbulent combustion systems. Proc. Combust. Inst. 30, 537–547 (2005)Google Scholar
  54. 54.
    Jenny, P., Muradoglu, K., Liu, K., Pope, S.B., Caughey, D.A.: PDF simulations of a bluff-body stabilized flow. J. Comput. Phys. 169, 1–23 (2001)zbMATHADSGoogle Scholar
  55. 55.
    Jiménez, J., Liñán, A., Rogers, M.M., Higuera, F.J.: A priori testing of subgrid models for chemically reacting non-premixed turbulent flows. J. Fluid Mech. 349, 149–171 (1997)zbMATHADSGoogle Scholar
  56. 56.
    Kempf, A., Forkel, H., Chen, J.Y., Sadiki, A., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28, 35–40 (2000)Google Scholar
  57. 57.
    Kennedy, C.A., Carpenter, M.H.: Several new numerical methods for compressible shear-layer simulations. Appl. Numer. Math. 14, 397–433 (1994)zbMATHMathSciNetGoogle Scholar
  58. 58.
    Kerstein, A.R., Cremer, M.A., McMurtry, P.A.: Scaling properties of differential molecular diffusion effects in turbulence. Phys. Fluids 7(8), 1999–2007 (1995)zbMATHADSGoogle Scholar
  59. 59.
    Kim, W.-W., Menon, S., Mongia, H.C.: Large-eddy simulation of a gas turbine combustor flow. Combust. Sci. Technol. 143, 25–62 (1999)Google Scholar
  60. 60.
    Kloeden, P.E., Platen, E., Schurz, H.: Numerical Solution of Stochastic Differential Equations through Computer Experiments. Springer, Berlin Heidelberg New York (1997) corrected second printing ednGoogle Scholar
  61. 61.
    Kuan, T.S., Lindstedt, R.P.: Transported probability density function modeling of a bluff body stabilized turbulent flame. Proc. Combust. Inst. 30(1), 767–774 (2005)Google Scholar
  62. 62.
    Kurose, R., Makino, H., Michioka, T., Komori, S.: Large eddy simulation of non-premixed turbulent reacting mixing layer: Effects of heat release and spanwise shear. Combust. Flame 127(3), 2157–2163 (2001)Google Scholar
  63. 63.
    Ladeinde, F., Cai, X., Sekar, B., Kiel, B.: Application of combined LES and flamelet modeling to methane, propane, and jet-A combustion. AIAA Paper 2001-0634 (2001)Google Scholar
  64. 64.
    Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows. Topics in Applied Physics, vol. 44. Springer, Berlin Heidelberg New York (1980)Google Scholar
  65. 65.
    Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows. Academic, London, England (1994)zbMATHGoogle Scholar
  66. 66.
    Lin, S.J., Corcos, G.M.: The mixing layer: Deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices. J. Fluid Mech. 141, 139–178 (1984)zbMATHADSGoogle Scholar
  67. 67.
    Liu, K., Pope, S.B., Caughey, D.A.: Calculations of bluff-body stabilized flames using a joint probablity density function model with detailed chamistry. Combust. Flame 141, 89–117 (2005)Google Scholar
  68. 68.
    Long, M.B., Starner, S.H., Bilger, R.W.: Differential diffusion in jets using joint PLIF and Lorenz-Mie imaging. Combust. Sci. Technol. 92, 209–224 (1993)Google Scholar
  69. 69.
    Madnia, C.K., Givi, P.: Direct numerical simulation and large eddy simulation of reacting homogeneous turbulence. In: Galperin, B., Orszag, S.A. (eds.) Large Eddy Simulations of Complex Engineering and Geophysical Flows, chap. 15, pp. 315–346. Cambridge University Press, Cambridge, England (1993)Google Scholar
  70. 70.
    Masri, A.R., Dally, B.B., Barlow, R.S., Carter, C.D.: The structure of the recirculation zone of a bluff-body combustor. Proc. Combust. Inst. 25, 1301–1308 (1994)Google Scholar
  71. 71.
    Masri, A.R., Dibble, R.W., Barlow, R.S.: Raman-Rayleigh measurements in bluff body stabilized flames of hydrocarbon fuels. Proc. Combust. Inst. 24, 317–324 (1992)Google Scholar
  72. 72.
    Masri, A.R., Dibble, R.W., Barlow, R.S.: The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22, 307–362 (1996)Google Scholar
  73. 73.
    Masri, A.R., Pope, S.B., Dally, B.B.: PDF computations of a strongly swirling nonpremixed flame stabilised on a new burner. Proc. Combust. Inst. 28, 123–131 (2000)CrossRefGoogle Scholar
  74. 74.
    McGrattan, K.B., Baum, H.R., Rehm, R.G.: Large eddy simulation of smoke movement. Fire Saf. J. 30(2), 161–178 (1998)Google Scholar
  75. 75.
    Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulations. Annu. Rev. Fluid Mech. 32, 1–32 (2000)zbMATHMathSciNetADSGoogle Scholar
  76. 76.
    Menon, S.: Subgrid combustion modelling for large-eddy simulations. Int. J. Engine Res. 1(2), 209–227 (2000)Google Scholar
  77. 77.
    Metcalfe, R.W., Orszag, S.A., Brachet, M.E., Menon, S., Riley, J.J.: Secondary instabilities of a temporally growing mixing layer. J. Fluid Mech. 184, 207–243 (1987)zbMATHADSGoogle Scholar
  78. 78.
    Moser, R.D., Rogers, M.M.: The three-dimensional evolution of a plane mixing layer: The Kelvin-Helmholtz rollup. J. Fluid Mech. 243, 183–226 (1992)zbMATHADSGoogle Scholar
  79. 79.
    Moser, R.D., Rogers, M.M.: Spanwise scale selection in plane mixing layers. J. Fluid Mech. 247, 321–337 (1993)ADSGoogle Scholar
  80. 80.
    Moser, R.D., Rogers, M.M.: The three-dimensional evolution of a plane mixing layer: Pairing and transition to turbulence. J. Fluid Mech. 247, 275–320 (1993)zbMATHADSGoogle Scholar
  81. 81.
    Muradoglu, M., Jenny, P., Pope, S.B., Caughey, D.A.: A consistent hybrid-volume/particle method for the PDF equations of turbulent reactive flows. J. Comput. Phys. 154(2), 342–371 (1999)zbMATHMathSciNetADSGoogle Scholar
  82. 82.
    Muradoglu, M., Liu, K., Pope, S.B.: PDF modeling of a bluff-body stabilized turbulent flame. Combust. Flame 132, 115–137 (2003)Google Scholar
  83. 83.
    Muradoglu, M., Pope, S.B., Caughey, D.A.: The hybrid method for the PDF equations of turbulent reactive flows: Consistency conditions and correction algorithms. J. Comput. Phys. 172, 841–878 (2001)zbMATHMathSciNetADSGoogle Scholar
  84. 84.
    Nilsen, V., Kosály, G.: Differential diffusion in turbulent reacting flows. Combust. Flame 17(3), 493–513 (1999)Google Scholar
  85. 85.
    O'Brien, E.E.: The probability density function (PDF) approach to reacting turbulent flows. In: Libby and Williams (eds.) Topics in Applied Physics, chap. 5, pp. 185–218Google Scholar
  86. 86.
    Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)ADSGoogle Scholar
  87. 87.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge, UK (2000)zbMATHGoogle Scholar
  88. 88.
    Piomelli, U.: Large-eddy simulation: Achievements and challenges. Prog. Aerosp. Sci. 35, 335–362 (1999)Google Scholar
  89. 89.
    Pitsch, H., Steiner, H.: Large eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)ADSGoogle Scholar
  90. 90.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energy Combust. Sci. 11, 119–192 (1985)MathSciNetADSGoogle Scholar
  91. 91.
    Pope, S.B.: Computations of turbulent combustion: Progress and challenges. Proc. Combust. Inst. 23, 591–612 (1990)Google Scholar
  92. 92.
    Pope, S.B.: On the relation between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6(2), 973–985 (1994)zbMATHADSGoogle Scholar
  93. 93.
    Pope, S.B.: Particle method for turbulent flows: Integration of stochastic model equations. J. Comput. Phys. 117, 332–349 (1995)zbMATHADSGoogle Scholar
  94. 94.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge, UK (2000)zbMATHGoogle Scholar
  95. 95.
    Pullin, D.I.: A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12(9), 2311–2319 (2000)MathSciNetADSGoogle Scholar
  96. 96.
    Raman, V., Fox, R.O., Harvey, A.D.: Hybrid finite-volume/transported PDF simulations of a partially premixed methane-air flame. Combust. Flame 136(3), 327–350 (2004)Google Scholar
  97. 97.
    Raman, V., Pitsch, H.: Large-eddy simulation of a bluff-body-stabilized non-premixed flame using a recursive filter-refinement procedure. Combust. Flame 142(4), 329–347 (2005)Google Scholar
  98. 98.
    Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/Lagrangian filtered density function approach for simulating turbulent combustion. Combust. Flame 143(1–2), 56–78 (2005)Google Scholar
  99. 99.
    Réveillon, J., Vervisch, L.: Response of the dynamic LES model to heat release. Phys. Fluids 8(8), 2248–2250 (1996)zbMATHADSGoogle Scholar
  100. 100.
    Réveillon, J., Vervisch, L.: Subgrid-scale turbulent micromixing: Dynamic approach. AIAA J. 36(3), 336–341 (1998)CrossRefADSGoogle Scholar
  101. 101.
    Riley, J.J., Metcalfe, R.W.: Direct numerical simulations of a perturbed, turbulent mixing layer. AIAA Paper 80-0274 (1980)Google Scholar
  102. 102.
    Risken, H.: The Fokker–Planck Equation, Methods of Solution and Applications. Springer, Berlin Heidelberg New York(1989)zbMATHGoogle Scholar
  103. 103.
    Sagaut, P.: Large Eddy Simulation for Incompressible Flows. Springer, Berlin Heidelberg New York (2001)zbMATHGoogle Scholar
  104. 104.
    Sandham, N.D., Reynolds, W.C.: Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133–158 (1991)zbMATHADSGoogle Scholar
  105. 105.
    Schumann, U.: Large eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos. Environ. 23(8), 1713–1726 (1989)Google Scholar
  106. 106.
    Sheikhi, M.R.H.: Joint Velocity-Scalar Filtered Density Function for Large Eddy Simulation of Turbulent Reacting Flows. PhD Thesis, Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania (2005)Google Scholar
  107. 107.
    Sheikhi, M.R.H., Drozda, T.G., Givi, P., Jaberi, F.A., Pope, S.B.: Large eddy simulation of a turbulent nonpremixed piloted methane jet flame (Sandia Flame D). Proc. Combust. Inst. 30, 549–556 (2005)Google Scholar
  108. 108.
    Sheikhi, M.R.H., Drozda, T.G., Givi, P., Pope, S.B.: Velocity-scalar filtered density function for large eddy simulation of turbulent flows. Phys. Fluids 15(8), 2321–2337 (2003)ADSGoogle Scholar
  109. 109.
    Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)ADSGoogle Scholar
  110. 110.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R., Song, S., Gardiner, W.C., Lissianski, V., Qin, Z.: http://www.me.berkeley.edu/gri_mech
  111. 111.
    Smith, L.L., Dibble, R.W., Talbot, L., Barlow, R.S., Carter, C.D.: Laser Raman scattering measurements of differential molecular diffusion in nonreacting turbulent jets of \(H_2 / CO_2\) mixing with air. Phys. Fluids 7(6), 1455–1466 (1995)ADSGoogle Scholar
  112. 112.
    Steiner, H., Bushe, W.K.: Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13(3), 754–759 (2001)ADSGoogle Scholar
  113. 113.
    Thibaut, D., Candel, S.: Numerical study of unsteady turbulent premixed combustion: Application to flashback simulation. Combust. Flame 113, 53–65 (1998)Google Scholar
  114. 114.
    Tong, C.: Measurements of conserved scalar filtered density function in a turbulent jet. Phys. Fluids 13(10), 2923–2937 (2001)ADSGoogle Scholar
  115. 115.
    Van Slooten, P.R., Pope, S.B.: Advances in PDF modeling for inhomogeneous turbulent flows. Phys. Fluids 10(1), 246–265 (1998)MathSciNetADSzbMATHGoogle Scholar
  116. 116.
    van Vliet, E., Derksen, J.J., van den Akker, H. E.A., Turbulent mixing in a tubular reactor: Assessment of an FDF/LES approach. AIChE J. 51(3), 725–739 (2005)Google Scholar
  117. 117.
    Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid Mech. 278, 351–362 (1994)zbMATHADSGoogle Scholar
  118. 118.
    Vreman, B., Geurts, B., Kuerten, H.: Large-eddy simulation of the turbulent mixing layer. J. Fluid Mech. 339, 357–390 (1997)zbMATHMathSciNetADSGoogle Scholar
  119. 119.
    Wang, D., Tong, C.: Conditionally filtered scalar dissipation, scalar diffusion, and velocity in a turbulent jet. Phys. Fluids 14(7), 2170–2185 (2002)ADSGoogle Scholar
  120. 120.
    Wang, D., Tong, C., Pope, S.B.: Experimental study of velocity filtered joint density function for large eddy simulation. Phys. Fluids 16(10), 3599–3613 (2004)ADSGoogle Scholar
  121. 121.
    Wilcox, D.C.: Turbulence Modeling for CFD, 2nd edn. DCW Industries, La Cañada, California (2000)Google Scholar
  122. 122.
    Wouters, H.A., Peeters, T.W.J., D., R.: Joint velocity-scalar PDF methods. In: Launder, B.E., Sandham, N.D. (eds.) Closure Strategies for Turbulent and Transitional Flows. Cambridge University Press (2002)Google Scholar
  123. 123.
    Xu, J., Pope, S.B.: Assessment of numerical accuracy of PDF/Monte Carlo methods for turbulent reacting flows. J. Comput. Phys. 152, 192–230 (1999)zbMATHADSGoogle Scholar
  124. 124.
    Yeunga, P.K., Xu, S., Sreenivasan, K.R.: Schmidt number effects on turbulent transport with uniform mean scalar gradient. Phys. Fluids 14(12), 4178–4191 (2002)ADSGoogle Scholar
  125. 125.
    Zhou, X.Y., Pereira, J.C.F.: Large eddy simulation (2D) of a reacting plan mixing layer using filtered density function. Flow Turbul. Combust. 64, 279–300 (2000)zbMATHGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2006

Authors and Affiliations

  • T. G. Drozda
    • 1
  • M. R. H. Sheikhi
    • 1
    Email author
  • C. K. Madnia
    • 1
  • P. Givi
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations